
Truthful Mechanism Design for Multi-Dimensional
Scheduling via Cycle Monotonicity

Ron Lavi
Industrial Engineering and Management

The Technion — Israel Institute of Technology

ronlavi@ie.technion.ac.il

Chaitanya Swamy
Combinatorics and Optimization

University of Waterloo

cswamy@math.uwaterloo.ca

ABSTRACT
We consider the problem of makespan minimization on m
unrelated machines in the context of algorithmic mechanism
design, where the machines are the strategic players. This is
a multidimensional scheduling domain, and the only known
positive results for makespan minimization in such a domain
are O(m)-approximation truthful mechanisms [22, 20]. We
study a well-motivated special case of this problem, where
the processing time of a job on each machine may either
be “low” or “high”, and the low and high values are public
and job-dependent. This preserves the multidimensional-
ity of the domain, and generalizes the restricted-machines
(i.e., {pj ,∞}) setting in scheduling. We give a general tech-
nique to convert any c-approximation algorithm to a 3c-
approximation truthful-in-expectation mechanism. This is
one of the few known results that shows how to export ap-
proximation algorithms for a multidimensional problem into
truthful mechanisms in a black-box fashion. When the low
and high values are the same for all jobs, we devise a de-
terministic 2-approximation truthful mechanism. These are
the first truthful mechanisms with non-trivial performance
guarantees for a multidimensional scheduling domain.

Our constructions are novel in two respects. First, we
do not utilize or rely on explicit price definitions to prove
truthfulness; instead we design algorithms that satisfy cy-
cle monotonicity. Cycle monotonicity [23] is a necessary
and sufficient condition for truthfulness, is a generalization
of value monotonicity for multidimensional domains. How-
ever, whereas value monotonicity has been used extensively
and successfully to design truthful mechanisms in single-
dimensional domains, ours is the first work that leverages
cycle monotonicity in the multidimensional setting. Second,
our randomized mechanisms are obtained by first construct-
ing a fractional truthful mechanism for a fractional relax-
ation of the problem, and then converting it into a truthful-
in-expectation mechanism. This builds upon a technique
of [16], and shows the usefulness of fractional mechanisms
in truthful mechanism design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’07, June 13–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-653-0/07/0006 ...$5.00.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
Mechanism design, approximation algorithms, scheduling

1. INTRODUCTION
Mechanism design studies algorithmic constructions un-

der the presence of strategic players who hold the inputs
to the algorithm. Algorithmic mechanism design has fo-
cused mainly on settings were the social planner or designer
wishes to maximize the social welfare (or equivalently, min-
imize social cost), or on auction settings where revenue-
maximization is the main goal. Alternative optimization
goals, such as those that incorporate fairness criteria (which
have been investigated algorithmically and in social choice
theory), have received very little or no attention.

In this paper, we consider such an alternative goal in the
context of machine scheduling, namely, makespan minimiza-
tion. There are n jobs or tasks that need to be assigned to
m machines, where each job has to be assigned to exactly
one machine. Assigning a job j to a machine i incurs a load
(cost) of pij ≥ 0 on machine i, and the load of a machine is
the sum of the loads incurred due to the jobs assigned to it;
the goal is to schedule the jobs so as to minimize the maxi-
mum load of a machine, which is termed the makespan of the
schedule. Makespan minimization is a common objective in
scheduling environments, and has been well studied algo-
rithmically in both the Computer Science and Operations
Research communities (see, e.g., the survey [12]). Following
the work of Nisan and Ronen [22], we consider each machine
to be a strategic player or agent who privately knows its own
processing time for each job, and may misrepresent these
values in order to decrease its load (which is its incurred
cost). Hence, we approach the problem via mechanism de-
sign: the social designer, who holds the set of jobs to be
assigned, needs to specify, in addition to a schedule, suitable
payments to the players in order to incentivize them to re-
veal their true processing times. Such a mechanism is called
a truthful mechanism. The makespan-minimization objec-
tive is quite different from the classic goal of social-welfare
maximization, where one wants to maximize the total wel-
fare (or minimize the total cost) of all players. Instead, it

corresponds to maximizing the minimum welfare and the no-
tion of max-min fairness, and appears to be a much harder
problem from the viewpoint of mechanism design. In partic-
ular, the celebrated VCG [26, 9, 10] family of mechanisms
does not apply here, and we need to devise new techniques.

The possibility of constructing a truthful mechanism for
makespan minimization is strongly related to assumptions
on the players’ processing times, in particular, the “dimen-
sionality” of the domain. Nisan and Ronen considered the
setting of unrelated machines where the pij values may be ar-
bitrary. This is a multidimensional domain, since a player’s
private value is its entire vector of processing times (pij)j .
Very few positive results are known for multidimensional
domains in general, and the only positive results known for
multidimensional scheduling are O(m)-approximation truth-
ful mechanisms [22, 20]. We emphasize that regardless of
computational considerations, even the existence of a truth-
ful mechanism with a significantly better (than m) approx-
imation ratio is not known for any such scheduling domain.
On the negative side, [22] showed that no truthful deter-
ministic mechanism can achieve approximation ratio better
than 2, and strengthened this lower bound to m for two spe-
cific classes of deterministic mechanisms. Recently, [20] ex-
tended this lower bound to randomized mechanisms, and [8]
improved the deterministic lower bound.

In stark contrast with the above state of affairs, much
stronger (and many more) positive results are known for a
special case of the unrelated machines problem, namely, the
setting of related machines. Here, we have pij = pj/si for
every i, j, where pj is public knowledge, and the speed si

is the only private parameter of machine i. This assump-
tion makes the domain of players’ types single-dimensional.
Truthfulness in such domains is equivalent to a convenient
value-monotonicity condition [21, 3], which appears to make
it significantly easier to design truthful mechanisms in such
domains. Archer and Tardos [3] first considered the related
machines setting and gave a randomized 3-approximation
truthful-in-expectation mechanism. The gap between the
single-dimensional and multidimensional domains is perhaps
best exemplified by the fact that [3] showed that there ex-
ists a truthful mechanism that always outputs an optimal
schedule. (Recall that in the multidimensional unrelated
machines setting, it is impossible to obtain a truthful mech-
anism with approximation ratio better than 2.) Various
follow-up results [2, 4, 1, 13] have strengthened the notion
of truthfulness and/or improved the approximation ratio.

Such difficulties in moving from the single-dimensional to
the multidimensional setting also arise in other mechanism
design settings (e.g., combinatorial auctions). Thus, in ad-
dition to the specific importance of scheduling in strategic
environments, ideas from multidimensional scheduling may
also have a bearing in the more general context of truthful
mechanism design for multidimensional domains.

In this paper, we consider the makespan-minimization
problem for a special case of unrelated machines, where
the processing time of a job is either “low” or “high” on
each machine. More precisely, in our setting, pij ∈ {Lj , Hj}
for every i, j, where the Lj , Hj values are publicly known
(Lj ≡“low”, Hj ≡“high”). We call this model the “job-
dependent two-values” case. This model generalizes the clas-
sic “restricted machines” setting, where pij ∈ {Lj ,∞} which
has been well-studied algorithmically. A special case of our
model is when Lj = L and Hj = H for all jobs j, which we

denote simply as the “two-values” scheduling model. Both
of our domains are multidimensional, since the machines are
unrelated: one job may be low on one machine and high on
the other, while another job may follow the opposite pat-
tern. Thus, the private information of each machine is a
vector specifying which jobs are low and high on it. Thus,
they retain the core property underlying the hardness of
truthful mechanism design for unrelated machines, and by
studying these special settings we hope to gain some insights
that will be useful for tackling the general problem.

Our Results and Techniques We present various posi-
tive results for our multidimensional scheduling domains.

Our first result is a general method to convert any c-
approximation algorithm for the job-dependent two values
setting into a 3c-approximation truthful-in-expectation mech-
anism. This is one of the very few known results that use
an approximation algorithm in a black-box fashion to obtain
a truthful mechanism for a multidimensional problem. Our
result implies that there exists a 3-approximation truthful-
in-expectation mechanism for the Lj-Hj setting. Interest-
ingly, the proof of truthfulness is not based on supplying ex-
plicit prices, and our construction does not necessarily yield
efficiently-computable prices (but the allocation rule is effi-
ciently computable). Our second result applies to the two-
values setting (Lj = L, Hj = H), for which we improve both
the approximation ratio and strengthen the notion of truth-
fulness. We obtain a deterministic 2-approximation truthful
mechanism (along with prices) for this problem. These are
the first truthful mechanisms with non-trivial performance
guarantees for a multidimensional scheduling domain. Com-
plementing this, we observe that even this seemingly simple
setting does not admit truthful mechanisms that return an
optimal schedule (unlike in the case of related machines).
By exploiting the multidimensionality of the domain, we
prove that no truthful deterministic mechanism can obtain
an approximation ratio better than 1.14 to the makespan
(irrespective of computational considerations).

The main technique, and one of the novelties, underly-
ing our constructions and proofs, is that we do not rely on
explicit price specifications in order to prove the truthful-
ness of our mechanisms. Instead we exploit certain algo-
rithmic monotonicity conditions that characterize truthful-
ness to first design an implementable algorithm, i.e., an algo-
rithm for which prices ensuring truthfulness exist, and then
find these prices (by further delving into the proof of im-
plementability). This kind of analysis has been the method
of choice in the design of truthful mechanisms for single-
dimensional domains, where value-monotonicity yields a con-
venient characterization enabling one to concentrate on the
algorithmic side of the problem (see, e.g., [3, 7, 4, 1, 13]).
But for multidimensional domains, almost all positive re-
sults have relied on explicit price specifications in order to
prove truthfulness (an exception is the work on unknown
single-minded players in combinatorial auctions [17, 7]), a
fact that yet again shows the gap in our understanding of
multidimensional vs. single-dimensional domains.

Our work is the first to leverage monotonicity conditions
for truthful mechanism design in arbitrary domains. The
monotonicity condition we use, which is sometimes called
cycle monotonicity, was first proposed by Rochet [23] (see
also [11]). It is a generalization of value-monotonicity and
completely characterizes truthfulness in every domain. Our
methods and analyses demonstrate the potential benefits

of this characterization, and show that cycle monotonicity
can be effectively utilized to devise truthful mechanisms for
multidimensional domains. Consider, for example, our first
result showing that any c-approximation algorithm can be
“exported” to a 3c-approximation truthful-in-expectation
mechanism. At the level of generality of an arbitrary ap-
proximation algorithm, it seems unlikely that one would be
able to come up with prices to prove truthfulness of the
constructed mechanism. But, cycle monotonicity does allow
us to prove such a statement. In fact, some such condition
based only on the underlying algorithm (and not on the
prices) seems necessary to prove such a general statement.

The method for converting approximation algorithms into
truthful mechanisms involves another novel idea. Our ran-
domized mechanism is obtained by first constructing a truth-
ful mechanism that returns a fractional schedule. Moving
to a fractional domain allows us to “plug-in” truthfulness
into the approximation algorithm in a rather simple fash-
ion, while losing a factor of 2 in the approximation ratio.
We then use a suitable randomized rounding procedure to
convert the fractional assignment into a random integral as-
signment. For this, we use a recent rounding procedure
of Kumar et al. [14] that is tailored for unrelated-machine
scheduling. This preserves truthfulness, but we lose another
additive factor equal to the approximation ratio. Our con-
struction uses and extends some observations of Lavi and
Swamy [16], and further demonstrates the benefits of frac-
tional mechanisms in truthful mechanism design.

Related Work Nisan and Ronen [22] first considered the
makespan-minimization problem for unrelated machines. They
gave an m-approximation positive result and proved various
lower bounds. Recently, Mu’alem and Schapira [20] proved
a lower bound of 2 on the approximation ratio achievable
by truthful-in-expectation mechanisms, and Christodoulou,
Koutsoupias, and Vidali [8] proved a (1 +

√
2)-lower bound

for deterministic truthful mechanisms.Archer and Tardos [3]
first considered the related-machines problem and gave a
3-approximation truthful-in-expectation mechanism. This
been improved in [2, 4, 1, 13] to: a 2-approximation ran-
domized mechanism [2]; an FPTAS for any fixed number of
machines given by Andelman, Azar and Sorani [1], and a
3-approximation deterministic mechanism by Kovács [13].

The algorithmic problem (i.e., without requiring truth-
fulness) of makespan-minimization on unrelated machines
is well understood and various 2-approximation algorithms
are known. Lenstra, Shmoys and Tardos [18] gave the first
such algorithm. Shmoys and Tardos [25] later gave a 2-
approximation algorithm for the generalized assignment prob-
lem, a generalization where there is a cost cij for assigning
a job j to a machine i, and the goal is to minimize the cost
subject to a bound on the makespan. Recently, Kumar,
Marathe, Parthasarathy, and Srinivasan [14] gave a random-
ized rounding algorithm that yields the same bounds. We
use their procedure in our randomized mechanism.

The characterization of truthfulness for arbitrary domains
in terms of cycle monotonicity seems to have been first ob-
served by Rochet [23] (see also Gui et al. [11]). This general-
izes the value-monotonicity condition for single-dimensional
domains which was given by Myerson [21] and rediscovered
by [3]. As mentioned earlier, this condition has been ex-
ploited numerous times to obtain truthful mechanisms for
single-dimensional domains [3, 7, 4, 1, 13]. For convex do-
mains (i.e., each players’ set of private values is convex), it

is known that cycle monotonicity is implied by a simpler
condition, called weak monotonicity [15, 6, 24]. But even
this simpler condition has not found much application in
truthful mechanism design for multidimensional problems.

Objectives other than social-welfare maximization and rev-
enue maximization have received very little attention in mech-
anism design. In the context of combinatorial auctions, the
problems of maximizing the minimum value received by a
player, and computing an envy-minimizing allocation have
been studied briefly. Lavi, Mu’alem, and Nisan [15] showed
that the former objective cannot be implemented truthfully;
Bezakova and Dani [5] gave a 0.5-approximation mechanism
for two players with additive valuations. Lipton et al. [19]
showed that the latter objective cannot be implemented
truthfully. These lower bounds were strengthened in [20].

2. PRELIMINARIES

2.1 The scheduling domain
In our scheduling problem, we are given n jobs and m

machines, and each job must be assigned to exactly one
machine. In the unrelated-machines setting, each machine i
is characterized by a vector of processing times (pij)j , where
pij ∈ R≥0 ∪ {∞} denotes i’s processing time for job j with
the value ∞ specifying that i cannot process j. We consider
two special cases of this problem:

1. The job-dependent two-values case, where pij ∈
{Lj , Hj} for every i, j, with Lj ≤ Hj , and the values
Lj , Hj are known. This generalizes the classic schedul-
ing model of restricted machines, where Hj = ∞.

2. The two-values case, which is a special case of above
where Lj = L and Hj = H for all jobs j, i.e., pij ∈
{L, H} for every i, j.

We say that a job j is low on machine i if pij = Lj , and high
if pij = Hj . We will use the terms schedule and assignment
interchangeably. We represent a deterministic schedule by a
vector x = (xij)i,j , where xij is 1 if job j is assigned to ma-
chine i, thus we have xij ∈ {0, 1} for every i, j,

P
i xij = 1

for every job j. We will also consider randomized algorithms
and algorithms that return a fractional assignment. In both
these settings, we will again specify an assignment by a vec-
tor x = (xij)i,j with

P
j xij = 1, but now xij ∈ [0, 1] for

every i, j. For a randomized algorithm, xij is simply the
probability that j is assigned to i (thus, x is a convex com-
bination of integer assignments).

We denote the load of machine i (under a given assign-
ment) by li =

P
j xijpij , and the makespan of a schedule is

defined as the maximum load on any machine, i.e., maxi li.

The goal in the makespan-minimization problem is to as-
sign the jobs to the machines so as to minimize the makespan
of the schedule.

2.2 Mechanism design
We consider the makespan-minimization problem in the

above scheduling domains in the context of mechanism de-
sign. Mechanism design studies strategic settings where the
social designer needs to ensure the cooperation of the differ-
ent entities involved in the algorithmic procedure. Following
the work of Nisan and Ronen [22], we consider the machines
to be the strategic players or agents. The social designer
holds the set of jobs that need to be assigned, but does

not know the (true) processing times of these jobs on the
different machines. Each machine is a selfish entity, that
privately knows its own processing time for each job. on a
machine incurs a cost to the machine equal to the true pro-
cessing time of the job on the machine, and a machine may
choose to misrepresent its vector of processing times, which
are private, in order to decrease its cost.

We consider direct-revelation mechanisms: each machine
reports its (possibly false) vector of processing times, the
mechanism then computes a schedule and hands out pay-
ments to the players (i.e., machines) to compensate them
for the cost they incur in processing their assigned jobs. A
(direct-revelation) mechanism thus consists of a tuple (x, P):
x specifies the schedule, and P = {Pi} specifies the pay-
ments handed out to the machines, where both x and the Pis
are functions of the reported processing times p = (pij)i,j .
The mechanism’s goal is to compute a schedule that has
near-optimal makespan with respect to the true processing
times; a machine i is however only interested in maximizing
its own utility, Pi − li, where li is its load under the output
assignment, and may declare false processing times if this
could increase its utility. The mechanism must therefore
incentivize the machines/players to truthfully reveal their
processing times via the payments. This is made precise
using the notion of dominant-strategy truthfulness.

Definition 2.1 (Truthfulness) A scheduling mechanism
is truthful if, for every machine i, every vector of processing
times of the other machines, p−i, every true processing-time
vector p1

i and any other vector p2
i of machine i, we have:

P 1
i −

X
j

x1
ijp

1
ij ≥ P 2

i −
X

j

x2
ijp

1
ij , (1)

where (x1, P 1) and (x2, P 2) are respectively the schedule and
payments when the other machines declare p−i and machine
i declares p1

i and p2
i , i.e., x1 = x(p1

i , p−i), P 1
i = Pi(p

1
i , p−i)

and x2 = x(p2
i , p−i), P 2

i = Pi(p
2
i , p−i).

To put it in words, in a truthful mechanism, no machine can
improve its utility by declaring a false processing time, no
matter what the other machines declare.

We will also consider fractional mechanisms that return
a fractional assignment, and randomized mechanisms that
are allowed to toss coins and where the assignment and the
payments may be random variables. The notion of truth-
fulness for a fractional mechanism is the same as in Def-
inition 2.1, where x1, x2 are now fractional assignments.
For a randomized mechanism, we will consider the notion
of truthfulness in expectation [3], which means that a ma-
chine (player) maximizes her expected utility by declaring
her true processing-time vector. Inequality (1) also defines
truthfulness-in-expectation for a randomized mechanism, where
P 1

i , P 2
i now denote the expected payments made to player i,

x1, x2 are the fractional assignments denoting the random-
ized algorithm’s schedule (i.e., xk

ij is the probability that j

is assigned to i in the schedule output for (pk
i , p−i)).

For our two scheduling domains, the informational as-
sumption is that the values Lj , Hj are publicly known. The
private information of a machine is which jobs have value
Lj (or L) and which ones have value Hj (or H) on it. We
emphasize that both of our domains are multidimensional,
since each machine i needs to specify a vector saying which
jobs are low and high on it.

3. CYCLE MONOTONICITY
Although truthfulness is defined in terms of payments,

it turns out that truthfulness actually boils down to a cer-
tain algorithmic condition of monotonicity. This seems to
have been first observed for multidimensional domains by
Rochet [23] in 1987, and has been used successfully in al-
gorithmic mechanism design several times, but for single-
dimensional domains. However for multidimensional do-
mains, the monotonicity condition is more involved and there
has been no success in employing it in the design of truth-
ful mechanisms. Most positive results for multidimensional
domains have relied on explicit price specifications in order
to prove truthfulness. One of the main contributions of this
paper is to demonstrate that the monotonicity condition for
multidimensional settings, which is sometimes called cycle
monotonicity, can indeed be effectively utilized to devise
truthful mechanisms. We include a brief exposition on it for
completeness. The exposition here is largely based on [11].

Cycle monotonicity is best described in the abstract social
choice setting: there is a finite set A of alternatives, there
are m players, and each player has a private type (valua-
tion function) v : A 	→ R, where vi(a) should be interpreted
as i’s value for alternative a. In the scheduling domain, A
represents all the possible assignments of jobs to machines,
and vi(a) is the negative of i’s load in the schedule a. Let
Vi denote the set of all possible types of player i. A mech-
anism is a tuple (f, {Pi}) where f : V1 × · · · × Vm 	→ A
is the “algorithm” for choosing the alternative, and Pi :
V1 × · · · × Vm 	→ A is the price charged to player i (in the
scheduling setting, the mechanism pays the players, which
corresponds to negative prices). The mechanism is truth-
ful if for every i, every v−i ∈ V−i =

Q
i′ �=i Vi′ , and any

vi, v
′
i ∈ Vi we have vi(a) − Pi(vi, v−i) ≥ vi(b) − Pi(v

′
i, v−i),

where a = f(vi, v−i) and b = f(v′
i, v−i). A basic question

that arises is given an algorithm f : V1 × · · · × Vm 	→ A, do
there exist prices that will make the resulting mechanism
truthful? It is well known (see e.g. [15]) that the price Pi

can only depend on the alternative chosen and the others’
declarations, that is, we may write Pi : V−i ×A 	→ R. Thus,
truthfulness implies that for every i, every v−i ∈ V−i, and
any vi, v

′
i ∈ Vi with f(vi, v−i) = a and f(v′

i, v−i) = b, we
have vi(a) − Pi(a, v−i) ≥ vi(b) − Pi(b, v−i).

Now fix a player i, and fix the declarations v−i of the
others. We seek an assignment to the variables {Pa}a∈A

such that vi(a)− vi(b) ≥ Pa −Pb for every a, b ∈ A and vi ∈
Vi with f(vi, v−i) = a. (Strictly speaking, we should use
A′ = f(Vi, v−i) instead of A here.) Define δa,b := inf{vi(a)−
vi(b) : vi ∈ Vi, f(vi, v−i) = a}. We can now rephrase the
above price-assignment problem: we seek an assignment to
the variables {Pa}a∈A such that

Pa − Pb ≤ δa,b ∀a, b ∈ A (2)

This is easily solved by looking at the allocation graph and
applying a standard basic result of graph theory.

Definition 3.1 (Gui et al. [11]) The allocation graph of
f is a directed weighted graph G = (A, E) where E = A×A
and the weight of an edge b → a (for any a, b ∈ A) is δa,b.

Theorem 3.2 There exists a feasible assignment to (2) iff
the allocation graph has no negative-length cycles. Further-
more, if all cycles are non-negative, a feasible assignment is

obtained as follows: fix an arbitrary node a∗ ∈ A and set Pa

to be the length of the shortest path from a∗ to a.

This leads to the following definition, which is another way
of phrasing the condition that the allocation graph have no
negative cycles.

Definition 3.3 (Cycle monotonicity) A social choice func-
tion f satisfies cycle monotonicity if for every player i, every
v−i ∈ V−i, every integer K, and every v1

i , . . . , vK
i ∈ Vi,

KX
k=1

h
vk

i (ak) − vk
i (ak+1)

i
≥ 0

where ak = f(vk
i , v−i) for 1 ≤ k ≤ K, and aK+1 = a1.

Corollary 3.4 There exist prices P such that the mecha-
nism (f, P) is truthful iff f satisfies cycle monotonicity.1

We now consider our specific scheduling domain. Fix a
player i, p−i, and any p1

i , . . . , p
K
i . Let x(pk

i , p−i) = xk for
1 ≤ k ≤ K, and let xK+1 = x1, pK+1 = p1. xk could
be a {0, 1}-assignment or a fractional assignment. We have
vk

i (xk) = −P
j xk

ijp
k
ij , so cycle monotonicity translates toPK

k=1

ˆ−P
j xk

ijp
k
ij +

P
j xk+1

ij pk
ij

˜ ≥ 0. Rearranging, we get

KX
k=1

X
j

xk+1
ij

`
pk

ij − pk+1
ij

´ ≥ 0. (3)

Thus (3) “reduces” our mechanism design problem to a
concrete algorithmic problem. For most of this paper, we
will consequently ignore any strategic considerations and fo-
cus on designing an approximation algorithm for minimizing
makespan that satisfies (3).

4. A GENERAL TECHNIQUE TO OBTAIN
RANDOMIZED MECHANISMS

In this section, we consider the case of job-dependent Lj ,
Hj values (with Lj ≤ Hj), which generalizes the classi-
cal restricted-machines model (where Hj = ∞). We show
the power of randomization, by providing a general tech-
nique that converts any c-approximation algorithm into a
3c-approximation, truthful-in-expectation mechanism. This
is one of the few results that shows how to export approxima-
tion algorithms for a multidimensional problem into truthful
mechanisms when the algorithm is given as a black box.

Our construction and proof are simple, and based on two
ideas. First, as outlined above, we prove truthfulness using
cycle monotonicity. It seems unlikely that for an arbitrary
approximation algorithm given only as a black box, one
would be able to come up with payments in order to prove
truthfulness; but cycle-monotonicity allows us to prove pre-
cisely this. Second, we obtain our randomized mechanism
by (a) first moving to a fractional domain, and construct-
ing a fractional truthful mechanism that is allowed to return
fractional assignments; then (b) using a rounding procedure
to express the fractional schedule as a convex combination
of integer schedules. This builds upon a theme introduced
by Lavi and Swamy [16], namely that of using fractional
mechanisms to obtain truthful-in-expectation mechanisms.

1It is not clear if Theorem 3.2, and hence, this statement,
hold if A is not finite.

We should point out however that one cannot simply plug
in the results of [16]. Their results hold for social-welfare-
maximization problems and rely on using VCG to obtain
a fractional truthful mechanism. VCG however does not
apply to makespan minimization, and in our case even the
existence of a near-optimal fractional truthful mechanism is
not known. We use the following result adapted from [16].

Lemma 4.1 (Lavi and Swamy [16]) Let M = (x, P) be
a fractional truthful mechanism. Let A be a randomized
rounding algorithm that given a fractional assignment x,
outputs a random assignment X such that E

ˆ
Xij

˜
= xij for

all i, j. Then there exist payments P ′ such that the mecha-
nism M ′ = (A, P ′) is truthful in expectation. Furthermore,
if M is individually rational then M ′ is individually rational
for every realization of coin tosses.

Let OPT (p) denote the optimal makespan (over integer
schedules) for instance p. As our first step, we take a c-
approximation algorithm and convert it to a 2c-approximation
fractional truthful mechanism. This conversion works even
when the approximation algorithm returns only a fractional
schedule (satisfying certain properties) of makespan at most
c · OPT (p) for every instance p. We prove truthfulness by
showing that the fractional algorithm satisfies cycle mono-
tonicity (3). Notice that the alternative-set of our fractional
mechanism is finite (although the set of all fractional assign-
ments is infinite): its cardinality is at most that of the input-
domain, which is at most 2mn in the two-value case. Thus,
we can apply Corollary 3.4 here. To convert this fractional
truthful mechanism into a randomized truthful mechanism
we need a randomized rounding procedure satisfying the re-
quirements of Lemma 4.1. Fortunately, such a procedure is
already provided by Kumar, Marathe, Parthasarathy, and
Srinivasan [14].

Lemma 4.2 (Kumar et al. [14]) Given a fractional as-
signment x and a processing time vector p, there exists a
randomized rounding procedure that yields a (random) as-
signment X such that,

1. for any i, j, E
ˆ
Xij

˜
= xij .

2. for any i,
P

j Xijpij <
P

j xijpij + max{j:xij∈(0,1)} pij

with probability 1.

Property 1 will be used to obtain truthfulness in expecta-
tion, and property 2 will allow us to prove an approximation
guarantee. We first show that any algorithm that returns
a fractional assignment having certain properties satisfies
cycle monotonicity.

Lemma 4.3 Let A be an algorithm that for any input p,
outputs a (fractional) assignment x such that, if pij = Hj

then xij ≤ 1/m, and if pij = Lj then xij ≥ 1/m. Then A
satisfies cycle-monotonicity.

Proof. Fix a player i, and the vector of processing times
of the other players p−i. We need to prove (3), that is,PK

k=1

P
j xk+1

ij

`
pk

ij − pk+1
ij

´ ≥ 0 for every p1
i , . . . , p

K
i , where

index k = K +1 is taken to be k = 1. We will show that for
every job j,

PK
k=1 xk+1

ij

`
pk

ij − pk+1
ij

´ ≥ 0.

If pk
ij is the same for all k (either always Lj or always Hj),

then the above inequality clearly holds. Otherwise we can

divide the indices 1, . . . , K, into maximal segments, where
a maximal segment is a maximal set of consecutive indices

k′, k′ + 1, . . . , k′′ − 1, k′′ (where K + 1 ≡ 1) such that pk′
ij =

Hj ≥ pk′+1
ij ≥ · · · ≥ pk′′

ij = Lj . This follows because there

must be some k such that pk
ij = Hj > pk−1

ij = Lj . We take

k′ = k and then keep including indices in this segment till
we reach a k such that pk

ij = Lj and pk+1
ij = Hj . We set

k′′ = k, and then start a new maximal segment with index
k′′ + 1. Note that k′′ �= k′ and k′′ + 1 �= k′ − 1. We now
have a subset of indices and we can continue recursively. So
all indices are included in some maximal segment. We will
show that for every such maximal segment k′, k′ +1, . . . , k′′,P

k′−1≤k<k′′ xk+1
ij

`
pk

ij − pk+1
ij

´ ≥ 0. Adding this for each
segment yields the desired inequality.

So now focus on a maximal segment k′, k′ + 1, . . . , k′′ −
1, k′′. Thus, there is some k∗ such that for k′ ≤ k < k∗, we
have pk

ij = Hj , and for k∗ ≤ k ≤ k′′, we have pk
ij = Lj . Now

the left hand side of the above inequality for this segment is

simply xk′
ij (Lj−Hj)+xk∗

ij (Hj−Lj) ≥ 0, since xk′
ij ≤ 1

m
≤ xk∗

ij

as pk′
ij = Hj and pk∗

ij = Lj .

We now describe how to use a c-approximation algorithm
to obtain an algorithm satisfying the property in Lemma 4.3.
For simplicity, first suppose that the approximation algo-
rithm returns an integral schedule. The idea is to simply
“spread” this schedule. We take each job j assigned to a
high machine and assign it to an extent 1/m on all machines;
for each job j assigned to a low machine, say i, we assign
1/m-fraction of it to the other machines where it is low, and
assign its remaining fraction (which is at least 1/m) to i.
The resulting assignment clearly satisfies the desired proper-
ties. Also observe that the load on any machine has at most
increased by 1

m
· (load on other machines) ≤ makespan, and

hence the makespan has at most doubled. This “spreading
out” can also be done if the initial schedule is fractional. We
now describe the algorithm precisely.

Algorithm 1 Let A be any algorithm that on any input p
outputs a possibly fractional assignment x such that xij > 0
implies that pij ≤ T , where T is the makespan of x. (In
particular, note that any algorithm that returns an integral
assignment has these properties.) Our algorithm, which we
call A′, returns the following assignment xF . Initialize xF

ij =
0 for all i, j. For every i, j,

1. if pij = Hj , set xF
ij =

P
i′:pi′j=Hj

xi′j/m;

2. if pij = Lj , set xF
ij = xij+

P
i′ �=i:pi′j=Lj

(xi′j−xij)/m+P
i′:pi′j=Hj

xi′j/m.

Theorem 4.4 Suppose algorithm A satisfies the conditions
in Algorithm 1 and returns a makespan of at most c·OPT (p)
for every p. Then, the algorithm A′ constructed above is a
2c-approximation, cycle-monotone fractional algorithm. More-
over, if xF

ij > 0 on input p, then pij ≤ c · OPT (p).

Proof. First, note that xF is a valid assignment: for
every job j,

P
i xF

ij =
P

i xij +
P

i,i′ �=i:pij=pi′j=Lj
(xi′j −

xij)/m =
P

i xij = 1. We also have that if pij = Hj

then xF
ij =

P
i′:pi′j=Hj

xi′j/m ≤ 1/m. If pij = Lj , then

xF
ij = xij(1 − �/m) +

P
i′ �=i xi′j/m where � = |{i′ �= i :

pi′j = Lj}| ≤ m − 1; so xF
ij ≥ P

i′ xi′j/m ≥ 1/m. Thus, by
Lemma 4.3, A′ satisfies cycle monotonicity.

The total load on any machine i under xF is at mostP
j:pij=Hj

P
i′:pi′j=Hj

Hj ·xi′j
m

+
P

j:pij=Lj
Lj

`
xij+

P
i′ �=i

xi′j

m

´
,

which is at most
P

j pijxij +
P

i′ �=i

P
j pi′jxi′j/m ≤ 2c ·

OPT (p). Finally, if xF
ij > 0 and pij = Lj , then pij ≤

OPT (p). If pij = Hj , then for some i′ (possibly i) with
pi′j = Hj we have xi′j > 0, so by assumption, pi′j = Hj =
pij ≤ c · OPT (p).

Theorem 4.4 combined with Lemmas 4.1 and 4.2, gives a
3c-approximation, truthful-in-expectation mechanism. The
computation of payments will depend on the actual approx-
imation algorithm used. Section 3 does however give an
explicit procedure to compute payments ensuring truthful-
ness, though perhaps not in polynomial-time.

Theorem 4.5 The procedure in Algorithm 1 converts any
c-approximation fractional algorithm into a 3c-approximation,
truthful-in-expectation mechanism.

Taking A in Algorithm 1 to be the algorithm that returns
an LP-optimum assignment satisfying the required condi-
tions (see [18, 25]), we obtain a 3-approximation mechanism.

Corollary 4.6 There is a truthful-in-expectation mechanism
with approximation ratio 3 for the Lj-Hj setting.

5. A DETERMINISTIC MECHANISM FOR
THE TWO-VALUES CASE

We now present a deterministic 2-approximation truthful
mechanism for the case where pij ∈ {L, H} for all i, j. In
the sequel, we will often say that j is assigned to a low-
machine to denote that j is assigned to a machine i where
pij = L. We will call a job j a low job of machine i if
pij = L; the low-load of i is the load on i due to its low jobs,
i.e.,

P
j:pij=L xijpij .

As in Section 4, our goal is to obtain an approximation
algorithm that satisfies cycle monotonicity. We first obtain
a simplification of condition (3) for our two-values {L, H}
scheduling domain (Proposition 5.1) that will be convenient
to work with. We describe our algorithm in Section 5.1.
In Section 5.2, we bound its approximation guarantee and
prove that it satisfies cycle-monotonicity. In Section 5.3,
we compute explicit payments giving a truthful mechanism.
Finally, in Section 5.4 we show that no deterministic mech-
anism can achieve the optimum makespan. Define

nk,�
H =

˛̨{j : xk
ij = 1, pk

ij = L, p�
ij = H}˛̨

(4)

nk,�
L =

˛̨{j : xk
ij = 1, pk

ij = H,p�
ij = L}˛̨

. (5)

Then,
P

j xk+1
ij (pk

ij − pk+1
ij) = (nk+1,k

H − nk+1,k
L)(H − L).

Plugging this into (3) and dividing by (H − L), we get the
following.

Proposition 5.1 Cycle monotonicity in the two-values schedul-
ing domain is equivalent to the condition that, for every
player i, every p−i, every integer K, and every p1

i , . . . , p
K
i ,

KX
k=1

`
nk+1,k

H − nk+1,k
L

´ ≥ 0. (6)

5.1 A cycle-monotone approximation algorithm
We now describe an algorithm that satisfies condition (6)

and achieves a 2-approximation. We will assume that L, H
are integers, which is without loss of generality.

A core component of our algorithm will be a procedure
that takes an integer load threshold T and computes an
integer partial assignment x of jobs to machines such that (a)
a job is only assigned to a low machine; (b) the load on any
machine is at most T ; and (c) the number of jobs assigned is
maximized. Such an assignment can be computed by solving
a max-flow problem: we construct a directed bipartite graph
with a node for every job j and every machine i, and an edge
(j, i) of infinite capacity if pij = L. We also add a source
node s with edges (s, j) having capacity 1, and sink node t
with edges (i, t) having capacity
T/L�. Clearly any integer
flow in this network corresponds to a valid integer partial
assignment x of makespan at most T , where xij = 1 iff there
is a flow of 1 on the edge from j to i. We will therefore use
the terms assignment and flow interchangeably. Moreover,
there is always an integral max-flow (since all capacities are
integers). We will often refer to such a max-flow as the
max-flow for (p, T).

We need one additional concept before describing the al-
gorithm. There could potentially be many max-flows and
we will be interested in the most “balanced” ones, which we
formally define as follows. Fix some max-flow. Let ni

p,T be
the amount of flow on edge (i, t) (or equivalently the number
of jobs assigned to i in the corresponding schedule), and let
np,T be the total size of the max-flow, i.e., np,T =

P
i ni

p,T .

For any T ′ ≤ T , define ni
p,T |T ′ = min(ni

p,T , T ′), that is, we
“truncate” the flow/assignment on i so that the total load
on i is at most T ′. Define np,T |T ′ =

P
i ni

p,T |T ′ . We define
a prefix-maximal flow or assignment for T as follows.

Definition 5.2 (Prefix-maximal flow) A flow for the above
network with threshold T is prefix-maximal if for every in-
teger T ′ ≤ T , we have np,T |T ′ = np,T ′ .

That is, in a prefix-maximal flow for (p, T), if we truncate
the flow at some T ′ ≤ T , we are left with a max-flow for
(p, T ′). An elementary fact about flows is that if an assign-
ment/flow x is not a maximum flow for (p, T) then there
must be an augmenting path P = (s, j1, i1, . . . , jK , iK , t) in
the residual graph that allows us to increase the size of the
flow. The interpretation is that in the current assignment,
j1 is unassigned, xi�j� = 0, which is denoted by the for-
ward edges (j�, i�), and xi�j�+1 = 1, which is denoted by
the reverse edges (i�, j�+1). Augmenting x using P changes
the assignment so that each j� is assigned to i� in the new
assignment, which increases the value of the flow by 1. A
simple augmenting path does not decrease the load of any
machine; thus, one can argue that a prefix-maximal flow for
a threshold T always exists. We first compute a max-flow for
threshold 1, use simple augmenting paths to augment it to a
max-flow for threshold 2, and repeat, each time augmenting
the max-flow for the previous threshold t to a max-flow for
threshold t + 1 using simple augmenting paths.

Algorithm 2 Given a vector of processing times p, con-
struct an assignment of jobs to machines as follows.

1. Compute T ∗(p) = min
˘
T ≥ H, T multiple of L :

np,T · L + (n − np,T) · H ≤ m · T ¯
.

Note that np,T ·L+(n−np,T) ·H−m ·T is a decreasing
function of T , so T ∗(p) can be computed in polynomial
time via binary search.

2. Compute a prefix-maximal flow for threshold T ∗(p)
and the corresponding partial assignment (i.e., j is as-
signed to i iff there is 1 unit of flow on edge (j, i)).

3. Assign the remaining jobs, i.e., the jobs unassigned in
the flow-phase, in a greedy manner as follows. Con-
sider these jobs in an arbitrary order and assign each
job to the machine with the current lowest load (where
the load includes the jobs assigned in the flow-phase).

Our algorithm needs to compute a prefix-maximal assign-
ment for the threshold T ∗(p). The proof showing the exis-
tence of a prefix-maximal flow only yields a pseudopolyno-
mial time algorithm for computing it. But notice that the
max-flow remains the same for any T ≥ T ′ = n · L. So
a prefix-maximal flow for T ′ is also prefix-maximal for any
T ≥ T ′. Thus, we only need to compute a prefix-maximal
flow for T ′′ = min{T ∗(p), T ′}. This can be be done in poly-
nomial time by using the iterative-augmenting-paths algo-
rithm in the existence proof to compute iteratively the max-
flow for the polynomially many multiples of L up to (and
including) T ′′.

Theorem 5.3 One can efficiently compute payments that
when combined with Algorithm 2 yield a deterministic 2-
approximation truthful mechanism for the two-values schedul-
ing domain.

5.2 Analysis
Let OPT (p) denote the optimal makespan for p. We now

prove that Algorithm 2 is a 2-approximation algorithm that
satisfies cycle monotonicity. This will then allow us to com-
pute payments in Section 5.3 and prove Theorem 5.3.

5.2.1 Proof of approximation

Claim 5.4 If OPT (p) < H, the makespan is at most OPT (p).

Proof. If OPT (p) < H , it must be that the optimal
schedule assigns all jobs to low machines, so np,OPT(p) = n.

Thus, we have T ∗(p) = L · �H
L
�. Furthermore, since we

compute a prefix-maximal flow for threshold T ∗(p) we have
np,T∗(p)|OPT(p) = np,OPT(p) = n, which implies that the
load on each machine is at most OPT (p). So in this case
the makespan is at most (and hence exactly) OPT (p).

Claim 5.5 If OPT (p) ≥ H, then T ∗(p) ≤ L · �OPT(p)
L

� ≤
OPT (p) + L.

Proof. Let nOPT(p) be the number of jobs assigned to
low machines in an optimum schedule. The total load on all
machines is exactly nOPT(p) · L + (n − nOPT(p)) · H , and is
at most m · OPT (p), since every machine has load at most

OPT (p). So taking T = L · �OPT(p)
L

� ≥ H , since np,T ≥
nOPT(p) we have that np,T ·L+(n−np,T)·H ≤ m·T . Hence,

T ∗(p), the smallest such T , is at most L · �OPT(p)
L

�.

Claim 5.6 Each job assigned in step 3 of the algorithm is
assigned to a high machine.

Proof. Suppose j is assigned to machine i in step 3. If
pij = L, then we must have ni

p,T∗(p) = T ∗(p), otherwise we
could have assigned j to i in step 2 to obtain a flow of larger
value. So at the point just before j is assigned in step 3,
the load of each machine must be at least T ∗(p). Hence,
the total load after j is assigned is at least m · T ∗(p) + L >
m · T ∗(p). But the total load is also at most np,T∗(p) · L +
(n − np,T∗(p)) · H ≤ m · T ∗(p), yielding a contradiction.

Lemma 5.7 The above algorithm returns a schedule with
makespan at most OPT (p)+max

˘
L, H(1− 1

m
)
¯ ≤ 2·OPT (p).

Proof. If OPT (p) < H , then by Claim 5.4, we are done.
So suppose OPT (p) ≥ H . By Claim 5.5, we know that
T ∗(p) ≤ OPT (p) + L. If there are no unassigned jobs after
step 2 of the algorithm, then the makespan is at most T ∗(p)
and we are done. So assume that there are some unassigned
jobs after step 2. We will show that the makespan after step
3 is at most T +H

`
1− 1

m

´
where T = min

˘
T ∗(p),OPT (p)

¯
.

Suppose the claim is false. Let i be the machine with the
maximum load, so li > T +H

`
1− 1

m

´
. Let j be the last job

assigned to i in step 3, and consider the point just before
it is assigned to i. So li > T − H/m at this point. Also
since j is assigned to i, by our greedy rule, the load on all
the other machines must be at least li. So the total load
after j is assigned, is at least H + m · li > m · T (since
pij = H by Claim 5.6). Also, for any assignment of jobs to
machines in step 3, the total load is at most np,T∗(p) · L +
(n − np,T∗(p)) · H since there are np,T∗(p) jobs assigned to
low machines. Therefore, we must have m · T < np,T∗(p) ·
L + (n − np,T∗(p)) · H . But we will argue that m · T ≥
np,T∗(p) ·L+(n−np,T∗(p)) ·H , which yields a contradiction.

If T = T ∗(p), this follows from the definition of T ∗(p).
If T = OPT (p), then letting nOPT(p) denote the number of
jobs assigned to low machines in an optimum schedule, we
have np,T∗(p) ≥ nOPT(p). So np,T∗(p) ·L+(n−np,T∗(p))·H ≤
nOPT(p) ·L+(n−nOPT(p)) ·H . This is exactly the total load
in an optimum schedule, which is at most m · OPT (p).

5.2.2 Proof of cycle monotonicity

Lemma 5.8 Consider any two instances p = (pi, p−i) and
p′ = (p′

i, p−i) where p′
i ≥ pi, i.e., p′

ij ≥ pij ∀j. If T is a
threshold such that np,T > np′,T , then every maximum flow
x′ for (p′, T) must assign all jobs j such that p′

ij = L.

Proof. Let Gp′ denote the residual graph for (p′, T) and
flow x′. Suppose by contradiction that there exists a job j∗

with p′
ij∗ = L that is unassigned by x′. Since p′

i ≥ pi, all
edges (j, i) that are present in the network for (p′, T) are
also present in the network for (p, T). Thus, x′ is a valid
flow for (p, T). But it is not a max-flow, since np,T > np′,T .
So there exists an augmenting path P in the residual graph
for (p, T) and flow x′. Observe that node i must be included
in P , otherwise P would also be an augmenting path in the
residual graph Gp′ contradicting the fact that x′ is a max-
flow. In particular, this implies that there is a path P ′ ⊂ P
from i to the sink t. Let P ′ = (i, j1, i1, . . . , jK , iK , t). All
the edges of P ′ are also present as edges in Gp′ — all reverse
edges (i�, j�+1) are present since such an edge implies that
x′

i�j�+1
= 1; all forward edges (j�, i�) are present since i� �= i

so p′
i�j�

= pi�j� = L, and x′
i�j�+1 = 0. But then there is

an augmenting path (j∗, i, j1, i1, . . . , jK , iK , t) in Gp′ which
contradicts the maximality of x′.

Let �L denote the all-low processing time vector. Define
T L

i (p−i) = T ∗(�L, p−i). Since we are focusing on machine i,
and p−i is fixed throughout, we abbreviate T L

i (p−i) to T L.

Also, let pL = (�L, p−i). Note that T ∗(p) ≥ T L for every
instance p = (pi, p−i).

Corollary 5.9 Let p = (pi, p−i) be any instance and let x be
any prefix-maximal flow for (p, T ∗(p)). Then, the low-load
on machine i is at most T L.

Proof. Let T ∗ = T ∗(p). If T ∗ = T L, then this is clearly
true. Otherwise, consider the assignment x truncated at T L.
Since x is prefix-maximal, we know that this constitutes a
max-flow for (p, T L). Also, np,TL < npL,TL because T ∗ >

T L. So by Lemma 5.8, this truncated flow must assign all
the low jobs of i. Hence, there cannot be a job j with pij = L
that is assigned to i after the T L-threshold since then j
would not be assigned by this truncated flow. Thus, the
low-load of i is at most T L.

Using these properties, we will prove the following key
inequality: for any p1 = (p−i, p

1
i) and p2 = (p−i, p

2
i),

np1,TL ≥ np2,TL − n2,1
H + n2,1

L (7)

where n2,1
H and n2,1

L are as defined in (4) and (5), respec-
tively. Notice that this immediately implies cycle mono-
tonicity, since if we take p1 = pk and p2 = pk+1, then (7)

implies that npk,TL ≥ npk+1,TL −nk+1,k
H +nk+1,k

L ; summing
this over all k = 1, . . . , K gives (6).

Lemma 5.10 If T ∗(p1) > T L, then (7) holds.

Proof. Let T 1 = T ∗(p1) and T 2 = T ∗(p2). Take the
prefix-maximal flow x2 for (p2, T 2), truncate it at T L, and
remove all the jobs from this assignment that are counted in
n2,1

H , that is, all jobs j such that x2
ij = 1, p2

ij = L, p1
ij = H .

Denote this flow by x. Observe that x is a valid flow for
(p1, T L), and the size of this flow is exactly np2,T2 |TL−n2,1

H =

np2,TL −n2,1
H . Also none of the jobs that are counted in n2,1

L

are assigned by x since each such job j is high on i in p2.
Since T 1 > T L, we must have np1,TL < npL,TL . So if we

augment x to a max-flow for (p1, T L), then by Lemma 5.8
(with p = pL and p′ = p1), all the jobs corresponding to
n2,1

L must be assigned in this max-flow. Thus, the size of

this max-flow is at least (size of x) + n2,1
L , that is, np1,TL ≥

np2,TL − n2,1
H + n2,1

L , as claimed.

Lemma 5.11 Suppose T ∗(p1) = T L. Then (7) holds.

Proof. Again let T 1 = T ∗(p1) = T L and T 2 = T ∗(p2).
Let x1, x2 be the complete assignment, i.e., the assignment
after both steps 2 and 3, computed by our algorithm for
p1, p2 respectively. Let S = {j : x2

ij = 1 and p2
ij = L} and

S′′ = {j : x2
ij = 1 and p1

ij = L}. Therefore, |S′′| = |S| −
n2,1

H +n2,1
L and |S| = ni

p2,T2 = ni
p2,T2 |TL (by Corollary 5.9).

Let T ′′ = |S′′| · L. We consider two cases.
Suppose first that T ′′ ≤ T L. Consider the following flow

for (p1, T L): assign to every machine other than i the low-
assignment of x2 truncated at T L, and assign the jobs in S′′

to machine i. This is a valid flow for (p1, T L) since the load

on i is T ′′ ≤ T L. Its size is equal to
P

i′ �=i ni′
p2,T2 |TL +|S′′| =

np2,T2 |TL −n2,1
H +n2,1

L = np2,TL −n2,1
H +n2,1

L . The size of the

max-flow for (p1, T L) is no smaller, and the claim follows.

Now suppose T ′′ > T L. Since |S| · L ≤ T L (by Corol-

lary 5.9), it follows that n2,1
L > n2,1

H ≥ 0. Let T̂ = T ′′ −L ≥
T L since T ′′, T L are both multiples of L. Let M = np2,T2 −
n2,1

H + n2,1
L = |S′′| + P

i′ �=i ni′
p2,T2 . We first show that

m · T̂ < M · L + (n − M) · H. (8)

Let N be the number of jobs assigned to machine i in x2.
The load on machine i is |S|·L+(N−|S|)·H ≥ |S′′|·L−n2,1

L ·
L+(N−|S|)·H which is at least |S′′|·L > T̂ since n2,1

L ≤ N−
|S|. Thus we get the inequality |S′′| ·L+(N −|S′′|) ·H > T̂ .
Now consider the point in the execution of the algorithm
on instance p2 just before the last high job is assigned to i
in Step 3 (there must be such a job since n2,1

L > 0). The
load on i at this point is |S| · L + (N − |S| − 1) · H which is

least |S′′| · L − L = T̂ by a similar argument as above. By
the greedy property, every i′ �= i also has at least this load
at this point, so

P
j p2

i′jx
2
i′j ≥ T̂ . Adding these inequalities

for all i′ �= i, and the earlier inequality for i, we get that
|S′′| ·L + (N − |S′′|) ·H +

P
i′ �=i

P
j p2

i′jx
2
i′j > mT̂ . But the

left-hand-side is exactly M · L + (n − M) · H .
On the other hand, since T 1 = T L, we have

m · T̂ ≥ m · T L ≥ np1,TL · L + (n − np1,TL) · H. (9)

Combining (8) and (9), we get that np1,TL > M = np2,T2 −
n2,1

H + n2,1
L ≥ np2,TL − n2,1

H + n2,1
L .

Lemma 5.12 Algorithm 2 satisfies cycle monotonicity.

Proof. Taking p1 = pk and p2 = pk+1 in (7), we get that

npk,TL ≥ npk+1,TL −nk+1,k
H +nk+1,k

L . Summing this over all
k = 1, . . . , K (where K + 1 ≡ 1) yields (6).

5.3 Computation of prices
Lemmas 5.7 and 5.12 show that our algorithm is a 2-

approximation algorithm that satisfies cycle monotonicity.
Thus, by the discussion in Section 3, there exist prices that
yield a truthful mechanism. To obtain a polynomial-time
mechanism, we also need to show how to compute these
prices (or payments) in polynomial-time. It is not clear,
if the procedure outlined in Section 3 based on computing
shortest paths in the allocation graph yields a polynomial
time algorithm, since the allocation graph has an exponen-
tial number of nodes (one for each output assignment). In-
stead of analyzing the allocation graph, we will leverage our
proof of cycle monotonicity, in particular, inequality (7), and
simply spell out the payments.

Recall that the utility of a player is ui = Pi − li, where Pi

is the payment made to player i. For convenience, we will
first specify negative payments (i.e., the Pis will actually
be prices charged to the players) and then show that these
can be modified so that players have non-negative utilities
(if they act truthfully). Let Hi denote the number of jobs
assigned to machine i in step 3. By Corollary 5.6, we know
that all these jobs are assigned to high machines (according

to the declared pis). Let H−i =
P

i′ �=i Hi′ and n−i
p,T =P

i′ �=i ni′
p,T . The payment Pi to player i is defined as:

Pi(p) = −L · n−i
p,T∗(p) − H · H−i(p)

− (H − L)
`
np,T∗(p) − np,TL

i (p−i)

´ (10)

We can interpret our payments as equating the player’s cost
to a careful modification of the total load (in the spirit of

VCG prices). The first and second terms in (10), when sub-
tracted from i’s load li equate i’s cost to the total load.
The term np,T∗(p) − np,TL

i
(p−i)

is in fact equal to n−i
p,T∗(p) −

n−i
p,T∗(p)|TL

i (p−i)
since the low-load on i is at most T L

i (p−i)

(by Claim 5.9). Thus the last term in equation (10) implies
that we treat the low jobs that were assigned beyond the
T L

i (p−i) threshold (to machines other than i) effectively as
high jobs for the total utility calculation from i’s point of
view. It is not clear how one could have conjured up these
payments a priori in order to prove the truthfulness of our
algorithm. However, by relying on cycle monotonicity, we
were not only able to argue the existence of payments, but
also our proof paved the way for actually inferring these pay-
ments. The following lemma explicitly verifies that the pay-
ments defined above do indeed give a truthful mechanism.

Lemma 5.13 Fix a player i and the other players’ declara-
tions p−i. Let i’s true type be p1

i . Then, under the payments
defined in (10), i’s utility when she declares her true type p1

i

is at least her utility when she declares any other type p2
i .

Proof. Let c1
i , c

2
i denote i’s total cost, defined as the

negative of her utility, when she declares p1, and p2, respec-
tively (and the others declare p−i). Since p−i is fixed, we
omit p−i from the expressions below for notational clarity.
The true load of i when she declares her true type p1

i is
L · ni

p1,T∗(p1) + H · Hi(p1), and therefore

c1
i = L · np1,T∗(p1) + H · (n − np1,T∗(p1))

+ (H − L)
`
np1,T∗(p1) − np1,TL

i

´

= n · H − (H − L)np1,TL
i

(11)

On the other hand, i’s true load when she declares p2
i is

L · (ni
p2,T∗(p2) − n2,1

H + n2,1
L) + H · (Hi + n2,1

H − n2,1
L) (since

i’s true processing time vector is p1
i), and thus

c2
i = n · H − (H − L)np2,TL

i
+ (H − L)n2,1

H − (H − L)n2,1
L .

Thus, (7) implies that c1
i ≤ c2

i .

Price specifications are commonly required to satisfy, in
addition to truthfulness, individual rationality, i.e., a player’s
utility should be non-negative if she reveals her true value.
The payments given by (10) are not individually rational as
they actually charge a player a certain amount. However,
it is well-known that this problem can be easily solved by
adding a large-enough constant to the price definition. In
our case, for example, letting �H denote the vector of all H ’s,
we can add the term n ·H− (H−L)n(�H,p−i),T

L
i (p−i)

to (10).

Note that this is a constant for player i. Thus, the new
payments are P ′

i (p) = n · H − L · n−i
p,T∗(p) − H · H−i(p) −

(H−L)
`
np,T∗(p)−np,TL

i (p−i)
+n(�H,p−i),T

L
i (p−i)

´
. As shown

by (11), this will indeed result in a non-negative utility for
i (since n(�H,p−i),T

L
i (p−i)

≤ n(pi,p−i),T
L
i (p−i)

for any type pi

of player i). This modification also ensures the additionally
desired normalization property that if a player receives no
jobs then she receives zero payment: if player i receives the
empty set for some type pi then she will also receive the
empty set for the type �H (this is easy to verify for our spe-

cific algorithm), and for the type �H, her utility equals zero;
thus, by truthfulness this must also be the utility of every
other declaration that results in i receiving the empty set.
This completes the proof of Theorem 5.3.

5.4 Impossibility of exact implementation
We now show that irrespective of computational consider-

ations, there does not exist a cycle-monotone algorithm for
the L-H case with an approximation ratio better than 1.14.
Let H = α ·L for some 2 < α < 2.5 that we will choose later.
There are two machines I, II and seven jobs. Consider the
following two scenarios:

Scenario 1. Every job has the same processing time on
both machines: jobs 1–5, are L, and jobs 6, 7 are H . Any
optimal schedule assigns jobs 1–5 to one machine and jobs 6,
7 to the other, and has makespan OPT 1 = 5L. The second-
best schedule has makespan at least Second1 = 2H + L.

Scenario 2. If the algorithm chooses an optimal schedule
for scenario 1, assume without loss of generality that jobs 6,
7 are assigned to machine II. In scenario 2, machine I has
the same processing-time vector. Machine II lowers jobs 6,
7 to L and increases 1–5 to H . An optimal schedule has
makespan 2L + H , where machine II gets jobs 6, 7 and one
of the jobs 1–5. The second-best schedule for this scenario
has makespan at least Second2 = 5L.

Theorem 5.14 No deterministic truthful mechanism for the
two-value scheduling problem can obtain an approximation
ratio better than 1.14.

Proof. We first argue that a cycle-monotone algorithm
cannot choose the optimal schedule in both scenarios. This
follows because otherwise cycle monotonicity is violated for
machine II. Taking p1

II , p
2
II to be machine II’s processing-

time vectors for scenarios 1, 2 respectively, we get
P

j(p
1
II ,j−

p2
II ,j)(x

2
II ,j −x1

II ,j) = (L−H)(1−0) < 0. Thus, any truthful
mechanism must return a sub-optimal makespan in at least
one scenario, and therefore its approximation ratio is at least
min

˘
Second1
OPT1

, Second2
OPT2

¯ ≥ 1.14 for α = 2.364.

We remark that for the {Lj , Hj}-case where there is a

common ratio r =
Hj

Lj
for all jobs (this generalizes the

restricted-machines setting) one can obtain a fractional truth-
ful mechanism (with efficiently computable prices) that re-
turns a schedule of makespan at most OPT (p) for every
p. One can view each job j as consisting of Lj sub-jobs of
size 1 on a machine i if pij = Lj , and size r if pij = Hj .
For this new instance p̃, note that p̃ij ∈ {1, r} for every
i, j. Notice also that any assignment x̃ for the instance p̃
translates to a fractional assignment x for p, where pijxij =P

j′: sub-job of j p̃ij′ x̃ij′ . Thus, if we use Algorithm 2 to ob-

tain a schedule for the instance p̃, equation (6) translates
precisely to (3) for the assignment x; moreover, the prices
for p̃ translate to prices for the instance p. The number of
sub-jobs assigned to low-machines in the flow-phase is sim-
ply the total work assigned to low-machines. Thus, we can
implement the above reduction by setting up a max-flow
problem that seems to maximize the total work assigned
to low machines. Moreover, since we have a fractional do-
main, we can use a more efficient greedy rule for packing the
unassigned portions of jobs and argue that the fractional as-
signment has makespan at most OPT (p). The assignment
x need not however satisfy the condition that xij > 0 im-
plies pij ≤ OPT (p) for arbitrary r, therefore, the rounding
procedure of Lemma 4.2 does not yield a 2-approximation
truthful-in-expectation mechanism. But if r > OPT (p) (as
in the restricted-machines setting), this condition does hold,
so we get a 2-approximation truthful mechanism.

Acknowledgments
We thank Elias Koutsoupias for his help in refining the anal-
ysis of the lower bound in Section 5.4, and the reviewers for
their helpful comments.

6. REFERENCES
[1] N. Andelman, Y. Azar, and M. Sorani. Truthful approximation

mechanisms for scheduling selfish related machines. In Proc.
22nd STACS, 69–82, 2005.

[2] A. Archer. Mechanisms for discrete optimization with
rational agents. PhD thesis, Cornell University, 2004.

[3] A. Archer and É. Tardos. Truthful mechanisms for
one-parameter agents. In Proc. 42nd FOCS, pages 482–491,
2001.

[4] V. Auletta, R. De-Prisco, P. Penna, and G. Persiano.
Deterministic truthful approximation mechanisms for
scheduling related machines. In Proc. 21st STACS, pages
608–619, 2004.

[5] I. Bezáková and V. Dani. Allocating indivisible goods. In ACM
SIGecom Exchanges, 2005.

[6] S. Bikhchandani, S. Chatterjee, R. Lavi, A. Mu’alem,
N. Nisan, and A. Sen. Weak monotonicity characterizes
deterministic dominant-strategy implementation.
Econometrica, 74:1109–1132, 2006.

[7] P. Briest, P. Krysta, and B. Vocking. Approximation
techniques for utilitarian mechanism design. In Proc. 37th
STOC, pages 39–48, 2005.

[8] G. Christodoulou, E. Koutsoupias, and A. Vidali. A lower
bound for scheduling mechanisms. In Proc. 18th SODA, pages
1163–1170, 2007.

[9] E. Clarke. Multipart pricing of public goods. Public Choice,
8:17–33, 1971.

[10] T. Groves. Incentives in teams. Econometrica, 41:617–631,
1973.

[11] H. Gui, R. Muller, and R. V. Vohra. Characterizing dominant
strategy mechanisms with multi-dimensional types, 2004.
Working paper.

[12] L. A. Hall. Approximation algorithms for scheduling. In
D. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems. PWS Publishing, MA, 1996.

[13] A. Kovács. Fast monotone 3-approximation algorithm for
scheduling related machines. In Proc. 13th ESA, pages
616–627, 2005.

[14] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and
A. Srinivasan. Approximation algorithms for scheduling on
multiple machines. In Proc. 46th FOCS, pages 254–263, 2005.

[15] R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization
of truthful combinatorial auctions. In Proc. 44th FOCS, pages
574–583, 2003.

[16] R. Lavi and C. Swamy. Truthful and near-optimal mechanism
design via linear programming. In Proc. 46th FOCS, pages
595–604, 2005.

[17] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth
revelation in approximately efficient combinatorial auctions.
Journal of the ACM, 49:577–602, 2002.

[18] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation
algorithms for scheduling unrelated parallel machines. Math.
Prog., 46:259–271, 1990.

[19] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On
approximately fair allocations of indivisible goods. In Proc.
5th EC, pages 125–131, 2004.

[20] A. Mu’alem and M. Schapira. Setting lower bounds on
truthfulness. In Proc. 18th SODA, 1143–1152, 2007.

[21] R. Myerson. Optimal auction design. Mathematics of
Operations Research, 6:58–73, 1981.

[22] N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Econ. Behavior, 35:166–196, 2001.

[23] J. C. Rochet. A necessary and sufficient condition for
rationalizability in a quasilinear context. Journal of
Mathematical Economics, 16:191–200, 1987.

[24] M. Saks and L. Yu. Weak monotonicity suffices for truthfulness
on convex domains. In Proc. 6th EC, pages 286–293, 2005.

[25] D. B. Shmoys and É. Tardos. An approximation algorithm for
the generalized assignment problem. Mathematical
Programming, 62:461–474, 1993.

[26] W. Vickrey. Counterspeculations, auctions, and competitive
sealed tenders. J. Finance, 16:8–37, 1961.

