

BIOMEDICAL ENGINEERING

Carnegie Mellon

Automatic Simulation-Driven Medical Device Optimization Design and Advanced Multiphase Modeling

> Jeongho Kim James F. Antaki, PhD July 2, 2010

CENTER FOR ADVANCED RESEARCH DESIGN INNOVATION AND OPTIMIZATION OF MEDICAL DEVICES

- Background
- Hypothesis
- Case Study 1: PVAD
- Case Study 2: Magnetic Cell Separator
- Case Study 3: Mixture Theory

- Engineer defines goals and constraints
- Engineers spend more time analyzing
- Saves valuable engineering time

Magnetically Levitated Miniature Mixed Flow Blood Pump

"Optimization" by Trial and Error

And the state states

Ô

• ANSYS CFX 12.0

• Steady-state incompressible flow

Sanori

- SST turbulent model
- Newtonian fluid

Rotating machine design using ANSYS Turbosystem

Parametric Models of Turbomachinery Blades

Middle Stator Blades

Automated Optimization

- Optimizer:
- Algorithm:
- Objective:
- Constraint:

- Isight (SIMULIA) NLPQL
- Maximize Efficiency
- Static Head >= 80 mmHg
- Optimization automatically changes design variables to find the "best" design satisfying specified criteria.

Working with Sam

Carnegie Mellon

	X						
	2 nd Quarter, 2010	3 rd Quarter, 2010	4 th Quarter, 2010	1 st Cu ater, 2011	2 nd Quarter, 2011	3 rd Quarter, 2011	4 th Quarter, 2011
Blood Damage (FDA Nozzle and PVAD)			~?`				
Gradient-Based Opt.			Q				
Response Surface Opt.							
Multi-Point Opt.	C	3					
Multi-Objective Opt.							

Accomplishments

Journal papers

- Kim, J., Antaki, J., Simulation-Based Automatic Optimization of the PediaFlowTM VAD, in preparation.
- JF Antaki1, MR Ricci, JE Verkaik, ST Snyder, TM Maul, J **(in**, D Paden, BE Paden, HS Borovetz, *PediaFlow™ Maglev Ventricular Assist Device: A Prescriptive Design Approach*, Cardiovascular Engineering Technology 1(1), 2010

Conference abstracts and proceedings

- <u>Kim, J.</u>, Antaki, J., Simulation-Based Automatic Optimization of the PediaFlowTM VAD. NIH-FDA-NSF Workshop 2010.
- <u>Kim, J.</u>, Antaki, J., Simulation-based Design and Optimization of the PediaFlow VAD. NIH-FDA-NSF Workshop 2009.
- Shu, F., Verkaik, J., Snyder, S., Pagen, D., <u>Kim, J.</u>, Antaki, J., *Ventricular Assist Device for Toddlers with Hybrid Magnetic-Mechanical Bearings*. ASAIO Abstracts, 2009. **55**(2):p.147.
- <u>Kim, J.</u>, Hund, S., Daly, A., Kameneva, M, Antaki, J., *Eulerian Method for Numerical* Prediction of Hemolysis in PediaFlow VAD. 5th IFAO Proceedings, 2009. **5**:p.59.
- <u>Kim, J.</u>, Antaki, J., *Computational Fluid Dynamic Shape Optimization of the PediaFlow*[™] *VAD*. ASAIO Abstracts, 2009. **55**(2):p.155.

Pumpkin PVAD quarterly reports (April 2010, July 2010)

Carnegie Mellon

mPhoresis[™] Magnetic Cell Separator

 A dialysis-like device that separate malaria infected RBCs from the blood using magnetic field.

Infected Red Cell

- The malaria parasite converts hemoglobin into hemozoin.
- Hemozoin becomes paramagnetic.

Carnegie Mellon

Infected cells are drawn towards the pole plate by the magnetic field, and are skimmed away.

B

Methods: Automated Design

Isight (SIMULIA)

- **Design Variable**: Height, Flow Rate, Wire Pitch
 - **Objective:** Minimize Length
 - Constraint: 99% Beads Captured
- Optimizer:
- Algorithm:

Results: Automatic Optimization

- NLPQL provided a local optimal point, depending on a starting point.
- Need different initial points to find a best optimal point.

Minimize Length	Side Bounds	Initial	Optimal	Initial	Optimal			
flow rate, cc/min	1 to 10	5	1	10	9			
height, micron	50 to 300	200	50	300	50			
pitch, micron	100 0 400	200	100	400	100			
length, mm		65.4	0.7	927.6	6.9			
Iteration			29		19			

Needed to capture 99% beads

CARDID-MD

	X						
	2 nd Quarter, 2010	3 rd Quarter, 2010	4 th Quarter, 2010	1 st Lurter,	2 nd Quarter, 2011	3 rd Quarter, 2011	4 th Quarter, 2011
Magnetic Particle Dynamics			2				
Lagrangian-Eulerian			O				
Mixture Theory							
Design Optimization	C	SC.					

Acomplishments

Journal papers

 Kim, J., et al., Magnetic particle Dynamics, in manuscript.

Conference abstracts and proceedings

• <u>Kim, J.</u>, Gandini, A., Antaki, J., *Numerical Study of Magnetic Field Separator to Remove Malaria-Infected Red Blood Cells from the Whole Blood*. NIH-FDA-NSF Workshop 2010.

Case Study 3: Developing an Advanced Multiphase Model: Mixture Theory

eC

Blood Properties

- Plasma
 - occupies 55-60% of total blood volume
- RBCs
 - 40-45% of blood volume
 - 8-10 µm diameter
 - biconcave discoids
 - aggregation and deformability
 - RBC tumbling
- White blood cells and Platelets
 - only contain 5% by volume
 - important roles in immunity and hematostasis

Hematocrit=20%

Zhao et al.

Microscopic Characteristics in Blood Flow

- Shear thinning, Fahraeus effect, Fahraeus-Lindqvist effect, Plasma skimming, Plateier margination, etc.
- Device-related micro-hemorbeological study is lacking.
- Single Phase Model
 - cannot predict the concentration profile of blood cells (phase separation)
 - is invalid at micro scale.
- There is no reliable hemorheological model that can predict hemodynamics for blood flow in blood contacting devices.

CARDID-MD

2

Multiphase Modeling: Mixture Theory

- the Theory of Interacting Continua
- based on the ideas of diffusion proposed by Fick
- a homogenization approach
 - each component is regarded as a single continuum and at each instant of time, every point in space is considered to be occupied by a particle belonging to each component of the mixture.
- The foundation of the theory is given in books by Truesdell (1984): Dobran (1991) and Rajagopal and Tao (1995).
- Johnson et al (1991) and Massoudi et al. (1999) have formulated a two-phase flow theory based on this mixture theory.

Benefits of the Mixture Theory &

CARDIO-MD

- To predict the phase separation of plasma-RBC mixture
 - velocity field of RBCs and plasma
 - concentration field of RBCs and plasma
- Can be applied to physiological Hematocrit (40~50%)
- The results will be used as the input to numerical platelet deposition model or/and blood damage model.

A brief review of Mixture Theory, cont'

• ρ_1 and ρ_2 are the bulk densities of the mixture components.

- ρ_{10} is the pure density of the component 1, ρ_2 is the pure density of component 2.
- v is the volume fraction of the component
 1, and φ is the volume fraction of
 component 2.
- For a saturated mixture φ = 1 v.

A brief review of Mixture Theory, cont'

 The mixture density, ρ_m and the mean velocity v_m of the mixture are defined

 $\rho_{\rm m} \mathbf{v}_{\rm m} = \rho_1 \mathbf{v}_1 + \rho_2 \mathbf{v}_2 \cdot$

$$\rho_{\rm m} = \rho_1 + \rho_2,$$

The individual stress tensors

$$\mathbf{T}_1 = (1 - \phi) \mathbf{T}_{\mathbf{f}} \qquad \mathbf{T}_2 = \mathbf{T}_{\mathbf{s}}$$

A mixture stress tensor

- The mixture stress tensor reduces to that of a pure fluid as $\phi \rightarrow 0$ and to that of the solid phase as $v \rightarrow 0$

Constitutive Equations for Plasma

CARDIO-MD

Plasma can be assumed to be a linearly viscous fluid.

$$\mathbf{T}_1 = [-\mathbf{p}(1-\phi) + \lambda (1-\phi)\mathbf{tr} \mathbf{D}_1]\mathbf{I} + 2\mu (1-\phi)\mathbf{D}_1$$

p is the fluid pressure, μ is the viscosity,
 D₁ is the symmetric part of the velocity gradient, and λ is the second coefficient of viscosity.

• The RBC phase is represented as an anisotropic non-linear density-gradient-type fluid. $T_2 = f(\phi, \nabla, D_2, D_2^2)$

$$\mathbf{T}_{2} = \left[\beta_{0} + \beta_{1}\nabla\phi \bullet\nabla\phi + \beta_{2}\partial\phi_{2}\right]\mathbf{I} + \beta_{3}\mathbf{D}_{2} + \beta_{4}\nabla\phi\otimes\nabla\phi + \beta_{5}\mathbf{D}_{2}^{2}$$

ρ₂= φρ_{RBC}, and the β's are material properties.

$$\mathbf{D}_2 = \frac{1}{2} \left[\nabla \mathbf{v}_2 + (\nabla \mathbf{v}_2)^{\mathrm{T}} \right]$$

- β_0 is similar to pressure
- β₂ corresponds to the second coefficient of viscosity
- β_1 and β_4 are the material parameters connected with the distribution of the RBCs
- β_3 is the viscosity
- β_5 is similar to the *cross-viscosity* of a Reiner-Rivlin fluid.

- β_0 is similar to pressure
- β₂ corresponds to the second coefficient of viscosity
- β_1 and β_4 are the material parameters connected with the distribution of the RBCs
- β_3 is the viscosity
- β_5 is similar to the *cross-viscosity* of a Reiner-Rivlin fluid.

- The viscous effects (β₃) is assumed to be predominate over the effects of the gradient of RBC volume fraction, the second coefficient of viscosity and the normal stresses.
- $\beta_{1,}\beta_{2}$, $\beta_{4,}$ and β_{5} are negligible.
- The stress tensor for the RBCs reduces to the structure.

$$\mathbf{T}_2 = \beta_0 \mathbf{I} + \beta_3 \mathbf{D}_2$$

 β_0 and β_3 are given by Massoudi and Antaki, • (2008)10000 1000 viscosity (cP) Shearby 100 adopti the RBC p 10 et al. 1 .00E-04 1.00E 06 1.00E-02 1.00E+00 1.00E+02 1.00E+04 1/2 $\beta_3(\phi) = (\mu_{\alpha})$ Shear Rate (1/s) Present Model Experiment (Chien et al. Science 1967)

Constitutive Equation for Interaction Forces, cont'

- No investigations as to what form A₁ may have
- The remaining coefficients have not been extensively studied for general two-component flows.

Need experiments for 1-D Mixture Theory

 The forms given above are ad-hoc applications of results that are strictly valid under more restricted conditions.

- FVM-based open source code
- C++
- Linux environment
- No black box
- Suitable for developing a new flow model

	X						
	2 nd Quarter, 2010	3 rd Quarter, 2010	4 th Quarter, 2010	1 st trurtter, 2015	2 nd Quarter, 2011	3 rd Quarter, 2011	4 th Quarter, 2011
1D Mixture Model (Five Sub-Studies)			-Q'				
2D/3D Mixture Model (Expansion Channel, Exotic Channel)		à	0				
Design Optimization		Ales					

Accomplishments

Journal papers

 Massoudi, M., Kim, J., Hund, S., Antaki, J., A Mixture Theory formulation for Blood Flow, in manuscript

Conference abstracts and proceedings

 Massoudi, M., Min, J., Hund, S., Antaki, J., A Mixture Theory formulation for Blood Flow.
 The 47th Annual Technical Meeting of Society of Engineering Science, 2010.

Acknowledgements

- Dr. Antaki
- Dr. Massoudi
- Dr. Kameneva
- Dr. Gandini
- Lab mates

Thanks for your time!

Questions?

