Computational Aspects of Fabrication, Spring 2015

Assignment 4: Linkage Design

Due April 22nd at 11:59pm.

For this assignment you will design some cool linkages, one of which will be physically manufactured. Pro-
vided with this assignment is a fully functional Matlab code for simulating planar linkages with revolute
joints.

In this assignment you will be responsible for:

1. Modifying the code to allow oscillatory driver input (instead of rotational)
2. Designing several linkages

3. Fabricating one of your designs

The remainder of this document is organized as follows:

1. |Getting Started

2. |Starter Code and Implementation Notes|
3.
4. Sibmeson T .

s
g
full revolution Drag-link Crank-rocker Double-rocker Parallelogram linkage
both links s+l > ptq s+l <ptq s+l > p+tq s+l =p+tq
(continuous motion) (continuous motion) (no continuous motion) (continuous motion)

Figure 1: Four-bar linkages [wikipedia]. s = smallest link length; 1 = longest link length; p, q = other two lengths.

1 Getting Started

1.1 Running the Code

The provided code is standalone and does not require any external libraries. Here we outline how to run the
code from Matlab’s command window.

1. Extract 1inkage.m to <WORKINGDIR>.

2. Open Matlab and go to the command window.
3. >> cd <WORKINGDIR>
4

. >> linkage (0)

Matlab will then open a figure window that shows the simulation of the sample linkage. The pin constraint
between the right and top links is randomized, so if you run the code multiple times, you’ll get a slightly
different mechanism each time. The argument “0” specifies the scene to run, which in this case is a crank-
rocker mechanism. Each new linkage mechanism that you create should have a new scene number.

2 Starter Code and Implementation Notes

(a) Link (b) Pin

Figure 2: (a) A link defined by its orientation, 6, and position, p. (b) A pin between two links. 4 and rp define where the
pin location is with respect to the links.

2.1 How to Create Scenes

To create a scene, we need a list of links and a list of constraints between the links. This is done inside the
switch statement at the top of the code. The sample four-bar linkage scene is defined in case 0.

Link: A link is modeled as a rigid body, and in 2D, it has three degrees of freedom: # € R and p € R?
(Fig. . 0 specifies the orientation of the link with respect to the positive x-axis, and p specifies the position
of the center of rotation. Given a point, 7, in the link’s local coordinates, the world coordinates of that point
can be computed as

x = R(0)r + p, (1)

where R is the rotation matrix given by

sinf cos6

_ (cos0 —sino)_ 2)

For example, the following code creates a horizontal link at the origin.

links (1) .angle = 0;
links (1) .pos = [0;0];
links (1) .verts = [0,-0.1;2,-0.1;2,0.1;0,0.11";

The kinematics of a link is fully expressed using 6 and p. In order to draw it on screen, however, we need to
give it a mesh. In this assignment, we simply assign to each link a list of vertices expressed in the link’s local
coordinates and transform these vertices into world coordinates whenever we move the link. Note that the
mesh is for display only—the simulation would work just fine even if we don’t have a mesh. In the example

above, the vertices are
0 2 2 0
-0.1)’ -0.1)’ 0.1/’ 0.1/’

which defines a rectangle with the link’s coordinate frame defined at the left end, as in Fig. These vectors
are stored column wise in the 1inks (1) .verts matrix.

Additionally, we specify that one of the links is grounded, meaning that it cannot move, and another link
is the driver, meaning that its orientation and position are specified procedurally. For example, grounded
= 1; driver = 2; specifies that 1inks (1) is grounded, and 1inks (2) is the driver.

Pin: A pin constrains two links with a revolute joint. It stores the indices of the two links to constrain
(say A and B) as well as where on the two links the pin constraint is located: r4 and rp (Fig. [2b). The
constraint should then make sure that, if 74 and rp are transformed to world space (using Eq.7 their
locations match. (If you're curious how this is actually implemented, see Sec.)

The following code creates a pin between 1inks (1) and links (2) as shown in Fig.

pins (1) .1links = [1,2];
pins (1) .pts = [4,0;-4,01";

The 1inks field specifies that the pin is between links 1 and 2, and the pts field specifies that

= (3). ra=(3)

Particle: To accentuate the interesting motions of linkages, we can add tracer particles to the links (like
the green lines in Fig.) The following code creates a particle.

particles (1) .1link = 4;
particles (1) .pt = [0.5;0.1];

The 1ink field specifies the parent link, and the pt field specifies where on this parent link the particle is
located (expressed in the parent link’s coordinates).

Hint: When creating scenes, the links do not need to be precisely positioned, since they will snap to
configurations that satisfy all the constraints that you specify, as long as those constraints are satisfiable.

2.2 How the Simulation Works (optional reading)

After the scene creation process finishes, we have a list of links, pins, and particles. The simulator then takes
this information and does the following:

while simulating
1. Procedurally set the driver angle
2. Solve for linkage orientations and positions
3. Update particle positions
4. Draw scene
end

In Step 1, we manually specify the target angle of the driver link. As long as the mechanism has a single
degree of freedom, the orientations and the positions of the rest of links can be solved for in Step 2 using
nonlinear least squares. In Step 3, we compute the world positions of the particles given the newly updated
link configurations. Finally, in Step 4, we draw the scene on the screen.

The meat of the simulator is in Step 2. The optimization variables in the nonlinear least squares problem
are the orientations, 6, and positions, p, of all the links, including grounded and driver links. We’ll use
¢ = [0;,p;]7 to denote the configuration of the ‘! link. We are looking for gy, ..., g, so that all of the
constraints are satisfied. There are two types of constraints implemented so far: prescribed and pin. In both
cases, we'll express the constraint in the form ¢(q) = 0.

Prescribed: Grounded and driver links have their configurations manually specified. We can express this
as a constraint on the orientation # and the position p of the link.

CG(Q) - 0 - etargeta cp(Q) =Dp— ptarget' (3)

For grounded links, the target orientation and position are fixed throughout the simulation, whereas for
driver links, they are specified procedurally.

Pin: A pin constrains two links so that they share a common point. Let the two links be denoted by A
and B. We can express the constraint as

Cpin(q; ’I") =TA—TB

= (R(OA)Tra+ps) — (ROB)TB +pp). (4)

We are looking for orientations and positions of the two links such that this constraint function evaluates to
zero. The orientations and positions of the two links, 6§ and p, are the variables of this constraint function,
whereas the locations of the pin joints expressed in local coordinates, r 4 and 7, are the parameters of this
constraint function.

Let ¢ be the concatenation of all the constraints. We're looking for the orientations and positions of all
the joints (#; and p,) such that the constraint violations are minimized:
1
minimize ~c’ec. (5)
a
We can solve this easily in Matlab using the function 1sgnonlin. What we need to provide is a function
that evaluates the vector-valued function ¢ and its Jacobian, J = d¢/9q. For grounded and driver constraints,
the Jacobian is just the identity: Jo =1, .J, = I. For pin constraints, the Jacobian is

J=(0c/004 Oc/Opy Oc/00p Oc/Opp)

:(R/(QA)T’A 1 —R/(QB)TB —I) (6)

where

cos) —sinf

R(0) = (—sine —cose) .

3 Your Tasks

1. The first task is to modify the driver so that it can also generate oscillatory motion in addition to
rotational motion. Currently, the piece of code that produces rotational motion is

dt = 0.01;
angVel = 2x*pi;
while t < T
links (driver) .angleTarget = links(driver) .angleTarget + dtxangVel;

end

This integrates the target angle with a constant angular velocity (27 radians per second), so that the
driver rotates at a constant rate. Your task here is to modify this code so that you can specify a range
that the driver oscillates between. For example, if the range is [—7/3, 7], then the driver should go
back and forth between —m/3 and 7 at some set frequency. You may not need angvel any more, since
the angular velocity will no longer be constant.

2. Design a family of linkages. The sample code (1inkage (0)) produces a crank-rocker mechanism,
since the shortest link, s, is the crank (driver). Starting from this sample code, you will create four
new linkages as detailed also in the matlab source code file: a Chebyshev linkage, a Peaucellier-Lipkin
linkage, a Klann linkage, and the linkage used for one of the legs of this animated LEGO horse:
https://www.youtube.com/watch?v=TN1gxbxKAAw.

3. Fabricate one of the linkage structures using 3D Printing or laser cutting. Please go to http://
ideate.andrew.cmu.edu/process/laser/rabbit/| for information on using the laser cutters
if this is the fabrication method you choose.

4 Submission Instructions

Please provide a report with your submission (PDF). The report should include images of all the mechanisms
that you designed. Document also the physical prototypes. How close did your design get to the target
motion, especially for the last linkage? You should also hand in the matlab code for the new linkage designs.

https://www.youtube.com/watch?v=TN1qxbxKAAw
http://ideate.andrew.cmu.edu/process/laser/rabbit/
http://ideate.andrew.cmu.edu/process/laser/rabbit/

	Getting Started
	Running the Code

	Starter Code and Implementation Notes
	How to Create Scenes
	How the Simulation Works (optional reading)

	Your Tasks
	Submission Instructions

