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Abstract 
"Episodic representation" is defined here as representation of knowledge about world-models that 
change from one time-point to another and about the operations that cause or describe these 
changes: events, actions, sequences of actions, plans, goals, costs, typical time durations, tools and 
materials required, etc.  "Episodic reasoning" is defined here as reasoning about these episodic 
representations: answering questions about what is going on, predicting future events, planning, 
plan recognition, generating plausible explanations, assigning credit or blame, etc.  In this paper 
we present Eris1, a unified architecture for episodic representation and reasoning in the Scone 
knowledge-base system.  Our approach depends on Scone's built-in mechanisms for representing 
multiple distinct but overlapping world-models in the same knowledge base and for default 
reasoning with exceptions. 

1.  The Problem: Episodic Representation and Reasoning 

Most of the symbolic knowledge representation systems currently used by the AI community 
focus on representing static semantic knowledge – that is, the world is described by statements 
and entities that are static and immutable. Such systems have many uses, but they only capture a 
part of the knowledge that we humans use in our everyday reasoning. We also make extensive 
use of episodic knowledge, in which the world model changes from one time to another, whether 
that change is due to specific actions or to natural forces (e.g. food spoiling, or the outside 
environment becoming dark as night falls).2 

                                                
1 Eris stands for "Episodic Representation In Scone".  Eris is also the name of a Pluto-sized (or perhaps larger) ice-

dwarf planet in a very eccentric orbit out beyond Neptune.  In Greek mythology, Eris is the goddess of chaos, strife, 
and discord. 

2 This distinction between semantic and episodic knowledge is inspired by the distinction made in cognitive psychology 
between "semantic memory" and "episodic memory" – a distinction proposed and popularized by psychologist Endel 
Tulving (1972).  However, in Tulving's work, the notion of episodic memory was specifically autobiographical, 
referring to scenes and episodes that the subject had actually experienced and often invoking some associated 
emotional state.  Here we use the term "episodic" to refer to any action, event, or change of state that a subject can 
represent and reason about, whether or not it was actually experienced. 



S. E. Fahlman 

 2 

An episodic knowledge representation must be able to represent these changing world-models, 
the operations that are responsible for these changes (events, actions, action-sequences, plans, and 
goals) and information about these operations: how long they take, how much they cost (by 
various measures of cost), what pre-conditions must be satisfied in order for the action to take 
place, what conditions might interfere with success, and so on.  The knowledge we have about 
these events, actions, and plans is at least as rich and varied as our knowledge of objects and 
static entities, their properties, and their relations. 

Episodic reasoning refers to our ability to reason about these actions, plans, and other episodic 
entities.  The system must be able to handle queries such as the following (though not necessarily 
in natural language): 

• Why was action X performed? 

• What is likely to occur next? 

• How long will it take to perform action sequence X?  What steps can be done 
concurrently?  Do some steps involve waiting for a slow change in state to occur, as in 
cooking or waiting for paint to dry? 

• What tools and materials are required in order to execute plan X?  Are they available? 

• What skills and specialized knowledge are required to execute plan X?  

This is just a sample of the kinds of inference that a human-like episodic representation and 
reasoning system should be able to support.  We want to use these episodic representations in a 
number of ways: 

• Representing and reasoning about some actual or imaginary sequence of events. 

• Given a few observed events – presumably parts of some larger plan – recognizing 
what the plan is.  For example, if someone is observed getting a spare tire and jack out 
of a car's trunk, he may be preparing to change a flat tire – an inference that the 
reasoner should be able to make even if it can't see the damaged tire. 

• Supporting a planning system that can consider alternative plan templates or recipes 
and choose a good one for the problem at hand.3 

2.  Eris: An Episodic Representation/Reasoning Architecture for Scone 

In the remainder of this paper we will describe an architecture for implementing this kind of 
episodic representation and reasoning in the Scone Knowledge-Base System (KBS).  Scone has 
been under active development for almost a decade in the Language Technologies institute of 
Carnegie Mellon University. Scone offers a number of unusual capabilities that are very useful 
for tasks of this kind. 

                                                
3 In our current work, we are interested in "good enough" or satisficing forms of planning (Simon, 1956), not 
optimal planning, which often introduces serious problems of computational tractability. 
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2.1  Relevant Characteristics of Scone 

The Scone KBS has been specifically developed to support human-like common-sense 
reasoning.  It offers great speed and scalability, easily scaling up to knowledge bases with a few 
million entities and statements while running on a standard workstation. 

Scone, by itself, is not a complete AI or decision-making system; rather, it is a software 
component – a sort of smart memory system – that is designed to be used in a wide range of 
software applications. Like other knowledge-base systems, Scone provides support for 
representing symbolic knowledge about the world: general common-sense knowledge or detailed 
knowledge about some specific application domain, or perhaps some of each.  Scone also 
provides efficient support for simple inference: inheritance of properties in a type hierarchy, 
following chains of transitive relations, detection of type mismatches, and so on. Scone supports 
flexible search within the knowledge base. For example, we can ask Scone to return all 
individuals or types in the knowledge base that exhibit some set of properties, or we can ask for a 
best-match if no exact match is available.  See (Fahlman 2006) for a discussion of the marker-
passing algorithms that give rise to this efficiency and scalability. 

Scone's knowledge base is fundamentally a semantic network, with nodes representing 
conceptual entities (not words) and links representing relations between the attached entities.  One 
particularly important type of link is the is-a link, which ties an individual or subtype to the more 
general type of which it is a member.  For example, there is an is-a link between {elephant} and 
{mammal}.  The curly-brace notation indicates a concept-node in Scone – there is a many-to-
many mapping between these concept-nodes and words in a human language such as English.  
The concept {elephant} may have multiple names in any given human language, or none;  a word 
such as "mouse" may be ambiguous – that is, tied to more than one distinct concept-nodes. 

An is-a link effectively says that all the properties and relations attached to a more general node 
such as {mammal} are inherited by all of its subtypes and instances, such as {elephant} or {Clyde 
the elephant}.  The inference machinery takes care of this inheritance, so there is no need to 
actually copy all this information.  We say that, because of the is-a link and the inheritance 
machinery, {elephant} has become a virtual copy of the {mammal} prototype.  This idea, and the 
mechanisms that implement it, are explored at greater length in (Fahlman, 2006). 

Most types (or classes) in Scone are defined not by a formal definition, but by a prototype 
description, indicating the properties of the typical member of that type.  In addition to inheriting 
relations and properties, subtypes and instances can inherit entire descriptions.  A prototype may 
have many role-nodes that are part of its description, each of which has its own supertypes, 
properties, and relations to other roles.  So if the typical {elephant} has one tail, one nose with 
very special properties, four legs, and a mother who is a female elephant, all of these structures 
are inherited – virtually copied – whenever we create an instance of an elephant.  This inheritance 
of complex structures implements one kind of frame system in the knowledge base (Minsky,  
1974).  We can build complex structures like elephants or families or companies, and the Scone 
KBS behaves as if we had copied the entire complex description of the supertype for each 
subtype or instance. 

The subtypes under a given type can be grouped into sets of mutually disjoint types via Scone's 
split-link, which can connect any number of subtypes into what we call a split-set.  Under 
{person}, for example, there is a split-set containing {male person} and {female person}.  
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Normally, an instance X under {person} can be a member of either of these subtypes, but not 
both at the same time.  Scone's inference mechanisms will signal an error if there is an attempt to 
create an is-a link from X to {male person} if X is already a subtype of {female person}, directly 
or indirectly.  A different split-set under person is {child} and {adult} – again, an instance can be 
one or the other, but not both.  However, it is perfectly legal for X to be both a {male person} and 
a {child}. 

Scone offers expressive power that goes beyond standard first-order logic in two important 
ways:  First, it supports default reasoning with exceptions: if we are told that Tweety is a bird, 
Scone can conclude that Tweety flies; if we later state that Tweety is a penguin, the conclusion 
about flying is withdrawn, but Tweety is still a kind of bird.  This exception is implemented by 
placing an is-not-a link between {penguin} and {flying thing}, which over-rides the chain of is-a 
links. 

Second, Scone supports higher-order logic, in which we can make statements about statements 
and in which this can affect the conclusions we draw.  For example, in Scone is it easy to 
represent "Bob believes that John loves Mary, but it isn't really true."  First-order logic is a fine 
tool for certain simple kinds of reasoning, but if we can’t represent and reason about statements 
like this one, we can't represent the plot of the average situation comedy or children's story.  
Scone's multiple-context mechanism (see below) is just a convenient way of packaging this 
capability for higher-order logic. 

There are always tradeoffs:  In order to achieve decidability and scalability in a system that also 
offers expressive power beyond that of first-order logic, we have had to give up the idea 
(common among designers of current knowledge-base systems) that all inference is done by some 
sort of logical theorem-proving procedure, with guarantees of  logical completeness, provable 
consistency, and soundness. Scone’s core inference machinery is designed to support the kinds of 
inference needed for everyday common-sense reasoning and natural language understanding, but 
Scone does not perform arbitrary logical inference to unlimited depth.  Like a human, Scone does 
a certain amount of work when new knowledge is added, finding almost all of the simple 
inferences and contradictions – then it stops. 

We believe that this is a good trade-off – probably a necessary trade-off – if we want a KBS 
that can provide human-like performance in real time on tasks such as story understanding.  See 
(Fahlman, 2008) for a more thorough explanation of this choice and its consequences. 

2.2  Multiple Contexts in Scone 

The most unusual aspect of Scone is its multiple-context system.  I will provide a brief summary 
of Scone contexts here.  For a more extensive explanation of the multiple context mechanism, 
with examples of how it can be used to emulate several aspects of human-like reasoning, see 
(Fahlman, 2011). 

A context is simply an entity in Scone’s knowledge base that serves as a container for other 
knowledge; that is, a context creates a distinct world-model or world-view within the larger KB.  
Every entity in the Scone KB exists within some context; every statement is tied to some context 
within which it is valid.  Before we make a query or deduction or add new knowledge to the 
Scone KB, we activate a specific context within which that operation, or set of operations, is to 
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take place.  The knowledge in that context participates in the operation; the knowledge in inactive 
contexts is dormant.  The marker-passing algorithms of Scone make it easy and efficient to 
implement these context-switches. 

Scone’s contexts are arranged in a hierarchy.  Each new context starts as a clone of some pre-
existing context.  There is one special context called “general” where all of the system’s general 
world-knowledge resides.  If we want to investigate some “what if” scenario X, we simply create 
a new context under “general”.  This only requires adding new node for X and an inheritance 
link.  Now whenever we activate X, we also activate “general” and all its contents.  But the 
reverse is not true: when we activate “general”, we do not see the contents of X.  Now we can 
activate X, add some new statements or perhaps cancel some statements that otherwise would be 
inherited from “general”, and begin to reason about the consequences of this what-if. 

Contexts are used in many ways in Scone: to represent hypothetical or counterfactual 
situations; to represent the world view (and likely actions) of someone with an alternative belief 
system or an incomplete state of knowledge; to quarantine a collection of information (perhaps 
supplied by some unreliable informant) that we want to explore, but may or may not choose to 
believe; or to bundle together a set of statements which, if they are all satisfied, would trigger 
some action.  Because the context mechanism is efficient and lightweight, Scone creates many 
contexts in a complex web of dependencies. It is also possible to work backwards, identifying a 
known context if we are given some of its contents. 

2.3  Representation of Events and Actions 

The multiple-context mechanism gives us a convenient way to represent the state of the world at 
various points in time – for example, after each step in a sequential plan and before the next step.  
This is the fundamental mechanism upon which our Eris system is built. 

Consider an event-type such as {die}.  In the prototype description for this event, there is a role 
for the {victim}, which must be of type {living thing} – that is, any kind of plant or animal.  
There is a role for the time at which the event occurs.  And there are two very important roles, the 
{before-context} and the {after-context}.  These represent the world-models before and after the 
event, respectively.  In the {before-context} the {victim} is alive; in the after-context, the victim 
is dead.  It is possible for the Scone user – a human or other program – to activate either of these 
contexts and to explore what conclusions can be drawn there.  For example, in the {before-
context}, the {victim} can move around and do things; in the {after-context}, the victim can only 
decompose. 

A key point is that we only have to explicitly state what is different about these two contexts.  
The {before-context} will generally inherit the entire world-model of general knowledge that is 
present immediately before the event: it may be a sunny Thursday in Pittsburgh, cars and dogs 
and computers do what they normally do, gravity works according to certain laws, and so on.  We 
don't have to copy any of that into the {before-context} – it is all inherited from the surrounding 
context.  The {before-context} may explicitly contain only a statement that the victim is alive.  
This serves as a sort of pre-condition, in the style of the old STRIPS planner (Fikes & Nilsson, 
1971) – it must be true in order for the event to take place.  The {after-context} inherits 
everything in the {before-context}, but it cancels the statement that the victim is alive and 
replaces it with a statement that the victim is dead. 
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If we now create an instance of the {die} event, it will have a specific role-filler for the 
{victim} role and for the {event time} role.  This represents an actual, specific event and not an 
event type. 

An action is just an event, with all the same roles and inference machinery, but also an {agent} 
role, which usually is filled by some {living thing} or possibly {force of nature}.  There is a 
relation stating that the {agent} caused the {event}. We can create sequences of events or actions 
by making the {after-context} of one be the {before-context} of the next one.  A complex action 
may have an {expansion}, which is a sequence of simpler actions that, when taken together, 
compose the larger action.  For example, the {expansion} of a {shoot} action may require loading 
the gun, pointing the gun, and pulling the trigger, in that order. 

2.4  Three Dimensions 

These event-types, action-types, instances of events and actions, sequences, and expansions can 
form a very complex and confusing structure in the knowledge base – a complex tangle of nodes 
and links.  One way to make sense of this is to consider that there are three dimensions here – or 
rather three intersecting partial orderings. 

First there is the is-a hierarchy under the {event} type-node.  The model for {event} is very 
simple: it basically just says that something has changed, so there is just a {before-context}, and 
{after-context}, and an {event time}.  These are inherited by all of the more specialized subtypes 
and instances of {event}.  One major subtype is {action}, which just adds an {agent} role.  And 
below that are all the different kinds of actions: going places, moving things, saying things, and 
so on.  The type hierarchy can extend down to very specific action types – "going to the 
Pittsburgh airport from CMU during rush hour", for which we might or might not have a good 
recipe.  The lowest nodes in the is-a hierarchy are specific instances of actions and events:  "John 
Smith going to the airport at 5pm on Thursday." 

Note that the split-sets described above play a significant role in this is-a hierarchy:  The "kill" 
event-type may be split into "kill with a gun", "kill with poison", "kill by drowning", etc.  And it 
might also be split according to legal status: "execute", "murder", "kill by accident", etc.  So we 
might have an instance of murder by poisoning or an instance of an execution by shooting. 

The second partial ordering follows the transitive part-of relation, rather than is-a.  A complex 
action may be divided into sub-actions (i.e. parts of the larger action), and each of those steps 
may be divided into even smaller actions, and so on until we reach the level of atomic actions that 
are no longer in the cognitive domain – they are simply executed by the low-level motor-control 
system of the human or robot.  So "go to the airport" may have subtypes "go to the airport by 
taxi", "drive to the airport by car", and so on.  But "drive to the airport by car" can be broken into 
parts, such as "get into the car", "start the engine", and so on.  "Turn the key in the ignition" is a 
part of going to the airport by car, not a subtype. 

Finally, there is the network of temporal before/after relations – another partial ordering, since 
we might not know the temporal ordering of all the steps.  If you want to shoot someone, you can 
buy the gun and buy the bullets in either order, but it is important to aim the gun before pulling 
the trigger. 
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A complex sequence of actions may require many hundreds of links to describe it, but the 
resulting structure can support many thousands of inferences.  The structure virtually contains an 
immense number of relations, courtesy of the inheritance and virtual copy mechanisms.  And 
within this structure there may be many distinct contexts: one for the state of the world after each 
step in the plan, and other contexts representing different viewpoints or different possible 
outcomes. 

Much of our current research is aimed at turning simple natural-language descriptions – 
narratives – into the knowledge structures that can support Eris.  And much research is going into 
modules to handle the reasoning made possible by these structures.  For example, we want to be 
able to answer "why" and "how" questions, and perhaps even "why not" questions.  I believe we 
now have a powerful foundation for Eris, but there is much structure still to be built on top of that 
foundation. 

3.  Implementation Status 

The basic approach described here is not new. Many of the fundamental ideas were described in 
the author's Ph.D. thesis (Fahlman, 1978, section 3.9).  However, the details were not worked out 
at that time, and the technology of the day was not ready to support implementation and testing of 
these ideas.  It is only recently that we have returned to this problem of Eris, using the much 
faster computers available today. 

Work on the core Scone system is ongoing, but a usable version of Scone has been running for 
several years.  Scone has been used in a number of application projects at CMU and elsewhere.  
An open-source Scone release on the Internet is planned for sometime in the next few months. 

The Eris scheme described here was implemented in prototype form by E. Cinar Sahin (2008).  
He tested and demonstrated the system on small problems in two application domains: 
monitoring events and actions at a conference (part of an intelligent personal assistant project) 
and detecting national-security threats. 

Sahin's implementation was refined and extended by Maria Santofimia Romero (2011), who 
used the system in an “ambient intelligence” application, monitoring and trying to understand the 
activities of humans.  She and colleagues are also applying this implementation to "smart power 
grid" problems. 

The Scone Research Group at Carnegie Mellon is currently working on a more complete and 
robust implementation of Eris that will be part of a future Scone release.  We currently have a 
project under way whose goal is to extend this Eris capability and to use it to support human-
robot interaction. If a robot assistant is to work and communicate effectively with a human – even 
on a task as simple as changing a flat tire –  there must be a large degree of overlap between the 
robot’s episodic knowledge and that of the human.  They must both understand what the goal is, 
what plans are available, what plan is being worked on at present, and who is performing what 
part of the plan. 

If they are to communicate effectively, the robot’s knowledge must be organized in such a way 
that it does not seem totally alien to the human.  The robot must be able to make sense of a 
command like "While I am looking for the lug wrench, you jack up the car."  We believe that the 
architecture described here is ideal for these goals. 
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There has recently been a good deal of interest at ONR and other agencies in developing AI 
systems with some measure of moral judgment, or at least the capability of following rather 
general rules of behavior laid down by humans.  We believe that a pre-requisite for such research 
is to endow these systems with the capability of predicting the possible results of their actions, 
including both intended results and unintended side-effects.  It will also be important to reason 
about whether an agent could reasonably have predicted certain outcomes.  So we have begun 
doing some exploratory work in this area. 
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