Inertial Measurement for planetary exploration: Accelerometers and Gyros

Bryan Wagenknecht

bwagenkn@cmu.edu

3/30/2009

3/30/2009 bwagenkn@cmu.edu 16-722: Accelerometers and Gyros for Navigation

Significance of Inertial Measurement

- Important to know "where am I?" if you're an exploration robot
- Probably don't have access to GPS or road signs to help you
- Mass (inertia) is a property that holds regardless of environment (gravity or no)
 - Want to harness this for internal estimation of state (position and velocity)

Physics and mechanical fundamentals: Accelerometers

- Newton's 3^{rd} law F = ma --> F/m = a
 - Measure deflection of a proof mass: Δx
 - Known compliance of spring or cantilever beam gives you force: F = k Δx
- Principles of transduction
 - Measure deflection via piezoelectric, piezoresistive, capacitive, thermal
- Device types
 - Macro-sized (old-school)
 - MEMS: beam micromachined from silicon wafer
 - Single- or multi-axis

Physics and mechanical fundamentals: Gyroscopes

- Precession: angular momentum conservation
 - Torque on spinning body results in torque about a 3rd axis
 - Precession torque generates signal to gimbal servos
 - Transduction: Magnetic induction "pick-offs" to determine angles between gimbal frames

Physics and mechanical fundamentals: Gyroscopes

- Coriolis force
 - Oscillating beam experiences in-plane rotation
 - Coriolis force causes perpendicular vibrations
 - Devices: piezoelectric gyro, hemispherical resonator gyro, MEMS gyro

bwagenkn@cmu.edu

16-722: Accelerometers and Gyros for Navigation

Physics and mechanical fundamentals: Gyroscopes

- Light interference
 - Laser light is split to travel opposite directions around a circuit
 - Rotation → path length differences
 - Devices: ring laser gyro
 (RLG), fiber optic gyro

Gimballed or Strapdown?

- Gimballed units
 - Whole IMU mounted in gimbal frame
 - Vehicle orientation measurement is "easy"
 - Problems:

3

h

- Errors grow near "gimbal lock"
- Weight, power consumption, size, cost

- <u>Strapdown units</u>
 - No gimbals required (no gimbal lock!)
 - Smaller, lighter, can be cheaper
 - Problem:
 - Requires digital computing to accurately track vehicle orientation based on gyro readings

Bring it together: IMU

- Sensor fusion
- IMU gives you Δv and $\Delta \theta$
- Integrate readings (dead reckoning)
- Problems
 - Accumulated error and drift
 - Noise
 - Gimbal lock
 - Changing gravity direction (as traveling over surface of a planet affects accelerometers)
 - Temperature effects
 - Cost of accuracy

Bring it together: IMU

- Solutions
 - Calibration
 - Redundancy and skew (multiple IMUs)
 - Filtering (Kalman, traditional)
 - Schuler tuning (for gravity direction changes)
 - Realignment using visual markers/fixes
 - Combine with other sensors (GPS, compass, airspeed, odometer)
 - Built-in temperature sensor with analog circuitry for correction

Homework: Underwater robot position estimation

- We have a submersible robot with uni-directional thrusters at each end (rear and aft) and a 3-axis strap-on accelerometer (Crossbow CXL04GP3 – look up the specs here: <u>www.xbow.com</u>) mounted inside
- It is executing a 30 sec. maneuver in a straight line using it's thrusters
- I'm providing you with the x-axis (aligned with direction of motion) voltage signal collected by the DAQ system for duration of the maneuver (collected at 100 Hz using a 16-bit analog-digital converter)
 - 1. Integrate the signal (you need to convert it from volts back to m/s^2) to get an estimate of the robot's position at the end of the 30-second maneuver. You may assume the accelerometer was properly calibrated and the robot starts from rest.
 - 2. Given the noise in the signal (it's uniform noise sampled within +/- the stated RMS noise range of the sensor), what is the uncertainty of your final position estimate?
 - 3. Now imagine the robot executes the same maneuver in much colder water without recalibrating the accel. first. Assume the zero-point of the accel. has drifted so that it now outputs 2.4 V at 0 g. Repeat Question 1 using the new zero-point. How does the accelerometer drift affect your position estimate? Comment (qualitatively) on the consequences of uncorrected accelerometer drift on the accuracy of your estimate.

16-722: Accelerometers and Gyros for Navigation

Historical applications

- Originally developed for rockets/missiles (Robert H. Goddard)
- Apollo missions used IMU with rotor gyros
 - Only used IMU for accelerated phases of mission
 - Align against stars during "coasting" phases
 - Star alignment allows for resetting of IMU and repositioning of gyro gimbal axes
 - Gyro errors build up quickly near gimbal lock
- MUST AVOID GIMBAL LOCK

Note: Xg — X IRIG; Xa — X PIP Yg — Y IRIG; Ya — Y PIP Zg — Z IRIG; Za — Z PIP

3/30/2009 bwagenkn@cmu.edu 16-722: Accelerometers : Navigation

Application: NASA Shuttles

- Shuttles outfitted with 3 High Accuracy Inertial Navigation Systems (HAINS) from Kearfott Corp.
 - Redundant IMUs mounted at varied angles (skewed)
- IMU contains rotor gyro on 4gimbal frame and 3 accelerometers
 - 4 gimbals avoids gimbal lock
- Alignment updates obtained from on-board star trackers

Application: Mars Exploration Rovers (MERs)

- MERs landed with two LN-200S units from Northrup Grumman
- IMU contains 3 fiber optic gyros and 3 MEMS accelerometers
- Experiences temperatures cycles -40 to 40 °C

DeraturesLN-200S IMU
Weight: 1.65 lb
Size: 3.5" dia x 3.35" h
Operating range:
Angular rate: ±11,459 deg/sec
Angular accel: ±100,000 deg/sec^2

Other Applications

- Aircraft navigation
- Tactical missiles and smart munitions
- Submarine/naval navigation
- Spacecraft
- Land travel (cars, robots, tractors)

Companies that make IMUs

- Military/Government Contractors
 - Honeywell (UAVs, missiles)
 - Northrup Grumman (MERs)
 - BAE (missiles)
 - Kearfott Corporation (NASA shuttles)
- Civilian Applications
 - Crossbow
 - Analog Devices

Example: Kearfott MOD VII Accelerometer triad assembly

- 3 pendulum accelerometers (for 3-axis measurements)
- Capacitive position detection
- Old design (around for 40 years)

TYPICAL SYSTEM SPECIFICATIONS				
Parameter	Unit	Performance		
Range				
Continuous	g	0 ±60		
Intermittent	g	0 ±100		
Scale Factor		4.00.459/		
Absolute	mA/g	1.20 ±15%		
Thermal Model	ppm	100*		
Stability 1 Year	ppm	100		
Bias				
Absolute	mg	0 ±100		
Thermal Model	μg	85*		
Stability 1 Year	μg	100		
Misalignment				
Absolute	mrad	0 ±20		
Thermal Model	μr	35*		
Stability 1 Year	μΓ	50		
Temperature Sensor	μ A /°C	1.0		
Threshold	μg	<1		
Linearity	$\mu g/g^2$	0 ±5		
Cross Coupling	$\mu g/g^2$	0 ±5		
Vibration Rectification	μg/g²rms	0 ±10		
Vibration	grms	10		
Shock	g	120		
Temperature	°C	-54 to +95		
Power	W	2.0		
Weight	gm	160		

3/30/2009 bwagenkn@cmu.edu 16-722: Accelerometers and Gyros for Navigation

Example: Crossbow GP-series MEMS accelerometer

4.45 cm

2 cm

- 3-axis MEMS accelerometer
- Light weight, small
- Cheap: ~\$150

<u>CXL04GP3</u>

Range: ± 4 g Bias: ± 0.1 g Noise: 10 mg (rms) Bandwidth: 100 Hz Operating temp: -40 to +85 Shock: 2000 g Weight: 46 grams 2.72 cm

IMU Comparisons

	Crossbow IMU320	Crossbow IMU700CB-200	Northrup Grumman LN-200
Gyros: Type	MEMS	Fiber-optic	Fiber-optic
Range	± 150 °/sec	± 200 °/sec	± 11,459 °/sec
Bias (in-run)	< 30 °/hr	< 20 °/hr	< 10 °/hr
Random walk	3 °/sq-rt hr	0.4 °/sq-rt hr	<0.15 °/sq-rt hr
Bandwidth	20 Hz	100 Hz	
Accelerometers: Type	MEMS	MEMS	MEMS
Range	± 4 g	± 4 g	± 70 g
Bias (in-run)	< 0.5 mg	< 12 mg	< 3 mg
Bandwidth	20 Hz	75 Hz	
Whole Unit: Cost	~ \$1,000	~ \$3,000	~ \$50,000 ???
Size, weight	10.8 x 8.9 x 3.8 cm, < 0.45 kg	12.7 x 15.2 x 10.1 cm, < 1.6 kg	8.9 dia x 8.5 h cm, <0.75 kg
Temp range	-40 to +85 °C	-40 to +60 °C	-54 to 71 °C
Shock		100 g (non-operating)	90 g

Advancing the art...

- Smaller, cheaper, faster computers for onboard computation
- Advances in silicon manufacturing technology, MEMS
- Improving MEMS accuracy
- Integration of MEMS inertial sensors with CMOS chips

Institutions and labs on cutting edge

- MEMS research still ongoing, but accel. and gyro research is old news
 - CMU's own MEMS lab involved in MEMS/single chip integration (circa. 2003)
- Aerospace companies seem to be leading advances in extremely accurate IMU's
- MEMS labs developing small/cheap integrated IMU's

References

- King, A.D. **"Inertial Navigation Forty Years of Evolution"** http://www.imar-navigation.de/download/inertial_navigation_introduction.pdf>
- Inertial Measurement Unit Market 2007-2012
 http://www.electronics.ca/reports/mems/imu_market.html
- NASA Shuttle IMU Reference Guide <http://spaceflight.nasa.gov/shuttle/reference/shutref/orbiter/avionics/gnc/imu.h tml>
- An integrated MEMS inertial measurement unit Cardarelli, D.; Position Location and Navigation Symposium, 2002 IEEE, 15-18 April 2002 Page(s):314 - 319
- Hoag, David. "Considerations of Apollo IMU Gimbal Lock." <u>Apollo Lunar Surface</u> <u>Journal</u> (1963). NASA. http://history.nasa.gov/alsj/e-1344.htm.
- Fraden, Jacob. Handbook of Modern Sensors, 2004
- Northrup Grumman datasheets http://www.es.northropgrumman.com/
- Kearfott datasheets < http://www.astronautics.com>
- Crossbow datasheets <http://www.xbow.com>