Sensing & Sensors CMU SCS RI 16722 S2009 MW(& some F) 12:00 -13:20 NSH1305

Onur Ozcan oozcan@andrew.cmu.edu +1 412 268 8847 office: SH 423

S2009

Proprioception

16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009

Proprioception

- For human:
 - From Latin *proprius*, meaning
 "one's own" and perception
 - The sense of the relative position of neighboring parts of the body
- For robots:
 - Measure values that are internal to the robot, e.g. motor speed, orientation of the robot, joint angles.

Why and How?

- Proprioception is significant because it enables:
 - Localization
 - Relative positioning
 - Measuring the orientation of the robot
- Proprioception is measured via:
 - Accelerometers
 - Gyroscopes
 - Encoders
 - Strain Gauges
 - Potentiometers

Proprioceptive Sensors #1: Accelerometers

- Calculate position by integrating the measured acceleration twice.
- Calculate forces using F = ma
- Usually MEMS devices
- Piezoresistive and capacitive sensing
- A proof mass is connected to springs with known stiffness. The position of the proof mass gives the force, hence the acceleration.
- Should have a significantly lower stiffness in the measurement axis compared to other axes.
- Problem: NOISE!

Proprioceptive Sensors #1: Accelerometers

18614 - F2008: 'MEMS' lecture notes

[2] Image courtesy of Analog Devices

Analog Devices ADXL50 50g Accelerometer: First MEMS accelerometer design without a diaphragm

Analog Devices - ADXL001: High Performance Wide Bandwidth MEMS Accelerometer [3]

- Specifications:
 - # of Axes: 1
 - Range: +/- 70g
 - Sensitivity: 24.2 mV/g
 - Output Type: Analog
 - Typical Bandwidth (kHz): 22kHz
 - Voltage Supply (V): 3.135 to 6
 - Supply Current: 9mA
 - Temp Range (°C): -40 to 125°C
 - High linearity: 0.2% of full scale
 - Low noise: 4 mg/ \sqrt{Hz}
 - Price: \$35.04

Piezoresistive Accelerometers

- Works nearly the same as capacitive accelerometers.
- The deflection of the proof mass is measured by a piezoresistive element.
- Usually more non-linear and suffer from hysteresis. Often less sensitive than capacitive accelerometers

16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009

Endevco Model 7264: Piezoresistive Accelerometer

Dynamic characteristics	Units	7264D-2000		
Range Sensitivity (at 100 Hz & 10 g)	g mV/g typ (min)	± 2000 0.20 (0.15)		
Frequency response	Hz	()		
(± 2% max, ref. 100 Hz)		0 to 3000		
(± 5% max, ref. 100 Hz)		0 to 6000		
Mounted resonance frequency	Hz typ	> 40 000		
Damping ratio	Max	0.005		
Non-linearity				
(% of reading, to full range)	% max	± 1		
Zero repeatability				
(after full scale shock)	Equiv. g	0.2		
Transverse sensitivity	% max	1		
Zero measurand output	mV max	± 25		
Thermal zero shift	mV typ	±10		
From 0°F to +150°F (-18°C to +66°C), ref 75°F (24°C)	mV max	± 25		
Thermal sensitivity shift	%/°F typ	-0.06		
From 0°F to +150°F (-18°C to +66°C)	%/°C typ	-0.10		
From 65°F to +85°F (+18°C to +29°C), ref 75°F (24°C)	±% typ	1.0		
Warm-up time	ms max	1		
Base strain sensitivity (per ISA 37.2 @ 250 µ strain)	Equiv. g's	< 0.1		
Mechanical overtravel stops	gʻs	5000 g typical,		
		2500 g minimum		

16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009

Proprioceptive Sensors #2: Gyroscopes

- Gyroscope is oscillated in horizontal plane
- The Coriolis force due to angular rotation causes the proof mass to oscillate in vertical direction
- Problems: Noise, nonlinearity and possible failure with high forces
 16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009
 Proprioception

Analog Devices - ADXRS610: ±300°/sec Yaw Rate Gyro

IN STALS ON	
	[8]
LIPERTA GIO	
	•77656 9636 564:0-: Cax2564800
	ADXRS GUE

• Complete rate gyroscope on a single chip

- Z-axis (yaw rate) response
- High vibration rejection over wide frequency
- Low-cost (Price: \$19.98)

		ADXRS610BBGZ			
Parameter [9]	Conditions	Min	Тур	Max	Unit
SENSITIVITY ¹	Clockwise rotation is positive output				
Measurement Range ²	Full-scale range over specifications range	±300			°/sec
Initial and Over Temperature	-40°C to +105°C	5.52	6	6.48	mV/°/sec
Temperature Drift ³			±2		%
Nonlinearity	Best fit straight line		0.1		% of FS
NULL ¹					
Null	-40°C to +105°C	2.2	2.5	2.8	V
Linear Acceleration Effect	Any axis		0.1		°/sec/g
NOISE PERFORMANCE					
Rate Noise Density	T _A ≤ 25°C		0.05		°/sec/√Hz
FREQUENCY RESPONSE					
Bandwidth⁴		0.01		2500	Hz
Sensor Resonant Frequency		12	14.5	17	kHz

16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009

Proprioceptive Sensors #3: Encoders

- Measures angular displacement of a motor shaft.
- 3 different types: Incremental, quadrature and absolute.
- There are also magnetic ones that work essentially the same

Proprioceptive Sensors #3: Encoders

Maxon Encoder HEDL 65xx/ HEDS 65xx Series

Features:

- Two Channel Quadrature Output with Optional Index Pulse
- 100°C Operating Temperature
- Easy Assembly, No Signal Adjustment Necessary
- Resolutions up to 1024 Counts Per Revolution
- Maximum Shaft Diameter of 5/8 Inches
- Single +5 V Supply

Proprioceptive Sensors #4: Strain Gauges

16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009

Lower

resistance

[14]

Compression

area thickens.

resistance decreases.

- Deflects with strain, changes resistance
- Is measured with Wheatstone bridges
- Is often used in accelerometers (Not MEMS) or linear actuators as feedback or measurement devices.
- Can be used in an analogous way to human receptors in muscles.

Omega - XY SERIES BIAXIAL GAGES FOR AXIAL STRAIN

a = 7 mm

b = 3.5 mm

Package Price = $5 \times 30

Foil Thickness:5 μm Carrier Material: Polyimide Carrier Thickness: 50 μm Connection: Solder pads, solder dots Nominal Resistance: 350 and 1000 Ohms Resistance Tolerance: 0.5% Gage Factor: 2.0 nominal (actual value printed on each package)

Thermal Properties Reference Temp.: 23°C/73°F Service Temp: Static: -30 to 250°C (-22 to 482°F) Dynamic: -30 to 300°C (-22 to 572°F) Compensated Temp.: -5 to 120°C (5 to 248°F) Tolerance of Temp. Comp.: 1 ppm°C (0.5 ppm°F)

Mechanical Properties Maximum Strain: 3% or 30,000 μe Fatigue (at ±1500 μe): > 10,000,000 cycles Smallest Bending Radius: 3 mm (1 /8 inch)

Proprioceptive Sensors #5: Potentiometers

- A variable resistor that is commonly used as a sensor.
- Changes contact point of wiper with rotation; therefore changes resistivity.
- High voltage output
- Can be used as a rotation sensor
- Can sometimes be used as throttle position sensor for automobiles. (Toyota uses this kind of control) [17]

Honeywell - 114BF1A102: Conductive Plastic Potentiometers

- Potentiometer Type: Precision
- Element Type: Conductive Plastic
- Terminal: Turret
- Power Rating: 1 W
- Resistance Value: 1 kOhm
- Resistance Tolerance: ± 10 %
- Linearity: ± 1 %
- Shaft Diameter: 6,35 mm [0.25 in]
- Body: 33,53 mm [1.32 in} diameter, ± 21,72 mm [0.855]
- Electrical Taper: Linear
- Operating Temperature: -65 °C to 125 °C [-85 °F to 257 °F]
- Rotational Life: 10 million cycles
- Mechanical Rotation: 360°

Assignment

- Compare a wheeled robot and a legged robot in terms of their needs for proprioceptive sensors, and their priorities. Comment on:
 - What are the key issues for a wheeled robot?
 - What type of proprioceptive sensors are needed for solving these issues?
 - What are the key issues for a legged robot?
 - What type of proprioceptive sensors are needed for solving these issues?

Research & Applications

- Nearly all robots (especially exploratory robots) uses proprioceptive sensors
- Proprioceptive sensors are well-established.
 - Noise level of accelerometers are a problem and being investigated by MEMS companies.
 - Miniaturization of Gyros are still being investigated, some products are already in the market.
 - <u>Researchers:</u> MEMS companies like Honeywell, Bosch, Analog Devices, ST Microelectronics.

Research

- Usually used for biomedical research

 Prosthetic arm, defining joint positions...etc.
- Noise level of accelerometers are a problem and being investigated by MEMS companies.
- <u>Sensor Fusion</u>: Enables relative and absolute positioning.
- <u>Error correction/compensation</u>: Usually using Kalman Filters or other drift estimation techniques.

Some Applications

- Versatile Stair-Climbing Robot for Search and Rescue Applications – Bremen Germany, 2008
- Proprioceptive control approach is employed.
- Motor torque sensors and a tilt sensor is used
- Each leg is controlled independently using torque and tilt feedback

16722 - oozcan@andrew.cmu.edu - Wed: 4/15/2009

- Spirit NASA, 2007
- Still exploring Mars
- Inertial measurement unit, act analogous to inner ear of human
- Can make precise movements
- Can work in a high range of temperatures

Some Applications from CMU

- Scarab RI CMU, 2009
- Lunar Crater Exploration
- Have inertial sensors, ground speed sensors, laser proximity sensors and a drill (which would need more proprioceptive sensors)
- It uses sensor fusion effectively to navigate
- WaalBot Nanorobotics lab, MechE CMU, 2007-Still on going.
- Uses accelerometers for orientation determination
- Uses motor encoder information to be able to climb. (force transfer is very important when climbing)

Future Directions

- <u>Lower noise levels</u>: With the rise of micro/nano technology, the noise levels of inertial measurement units will decrease.
- <u>Sensor Fusion</u>: The help of sensor fusion field will enable the proprioception sensors create absolute position data with the help of GPS (absolute coordinates) and/or compasses (direction).
- <u>Software error correction for proprioceptive sensors:</u> Several groups are working on this subject to decrease or eliminate the errors due to the high noise levels of inertial measurement units. They are expected to find solutions soon.

References

[1] http://www.als-mda.org/publications/fa-als.html

[2]

[3]

http://www.analog.com/library/analogdial ogue/archives/43-02/mems_microphones.

http://www.analog.com/en/mems-and-sensors/imems-accelerometers/adxl001/prod

- [4] http://www.analog.com/en/press-release/May_05_2008_ADI_Mems-Based_Vibratic
- [5] J. P. Lynch *et al.* "Design of Piezoresistive MEMS-Based Accelerometer for Integration with Wireless Sensing Unit for Structural Monitoring", Journal of Aerospace Engineering, 2003.
- [6] http://www.endevco.com/product/Product.aspx?produc t_id=76

[7] http://archives.sensorsmag.com/articles/1104/21/main. shtml

[8] http://www.warf.com/index.php?action=productreview&productite ms=3408[9]

http://www.analog.com/en/mems-and-sensors/imems-gyroscopes/adxrs610/produc [10] http://zone.ni.com/devzone/cda/tut/p/id/4672

[11] http://www.sensors-transducers.machinedesign.com/ArticleDraw.aspx?artid=57754 [12]

http://www.analog.com/en/training-and-tutorials/tutorials/design-center/tutorials/CU_

References

- [13] http://test.maxonmotor.com/docsx/Dow nload/Product/Pdf/HEDS65-E.pdf
- [14] http://en.wikipedia.org/wiki/Strain gauge
- [15] http://www.omega.com/ppt/pptsc.asp?ref=XDUCER GAGES&nav=PREE02A
- [16] http://en.wikipedia.org/wiki/Potentiometers
- [17] http://www.autoshop101.com/forms/h15.pdf
- [18] http://sensing.honeywell.com/index.cfm?ciid=140301&la_id=1&pr_id=152343
- [19] Eich et al. "A Versatile Stair-Climbing Robot for Search and Rescue Applications", Proceedings of the 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, Sendai, Japan, October 2008.
- [20] Mars Exploration Rover Mission: Rover Spirit, NASA, http:// marsrovers.jpl.nasa.gov/technology/bb_avionics.html
- [21] Bartlett et al. "Design of the Scarab Rover for Mobility & Drilling in the Lunar Cold Traps", International Symposium on Artificial Intelligence, Robotics and Automation in Space, February, 2008.
- [22] M. Murphy, M. Sitti, "Waalbot: An Agile Small-Scale Wall Climbing Robot Utilizing Dry Elastomer Adhesives", IEEE/ASME Transactions on Mechatronics, vol.12, no. 3, June 2007