In-situ materials characterization for planetary exploration

Eng Keong Chua echua@andrew.cmu.edu

Outline

Motivation Instruments on lander Working principle Recent development XRD/XRF (CheMin) Portable XRD/XRF (Terra) Instruments on orbiter Working principle Recent development Portable FT-IR

Motivation

 In situ analyses of surface rocks and soils
 Investigate the structure and composition at the site by analysis tools integrated into teleoperated robot

Benefits:

- Survey before planning human to a site of interest
- Acquire information for decisions in real time at the site with remote control

Instruments deployed by space agency

Lander

Gas Chromatography Mass Spectrometry
 X-Ray Fluorescence Spectrometry
 Alpha Proton X-Ray Spectrometry
 X-Ray Diffraction Spectrometry

Gas Chromatography Mass Spectrometry Mass spectrometery

- Identify organic molecule or atmosphere composition (NASA Viking 1 - 1976)
- GCMS setup

- Gas chromatography (GC) separates
 chemical mixture into pure chemicals
- Mass spectrometer (MS) identifies and quantifies the chemicals
- Data from mass spectrometer is sent to a computer to plot mass spectrum

Principle of <u>GCMS</u>

Decomposition of the pure molecules in MS, data is plot as mass spectrum

This observed spectrum is compared with published patterns of known decomposition that is stored in a fragmentation library to identify the organic molecule

2

mass

X-Ray Fluorescence Spectrometry

 Identify and determined concentration of elements: (NASA Viking 1 - 1976)
 solid,powdered and liquid samples
 XRF setup

Principle of <u>XRF</u>

• Measures characteristics X-rays of fluorescent emission produced by a irradiated sample $\lambda = h \cdot c/E$

Alpha Proton X-Ray Spectrometry

Analyses the chemical element composition of a sample (NASA Mars Pathfinder- 1996)

- APXS set up
 Alpha particles sources
 - irradiated on sample
 - Detector:
 - Scattered alpha particlesEmitted protonsFluorescent X-rays

Principle of APXS

Principle:

Based on interactions of

alpha particles with matter:

- Collision of alpha particles with nuclei
 - Elastic scattering of alpha particles by nuclei

- Alpha particles absorbed by nuclei produce proton of certain energy by alpha-proton nuclear reactions
- Collision of alpha particles with electrons of the atoms
 - Excitation of the atomic structure of atoms leading to the emission of characteristic X-rays

X-Ray Diffraction Spectrometry

- XRD the most comprehensive tool to identify crystal structure (ESA Beagle 2 -2003)
 - Examine reflection of X-rays from a material at various angles.
 - X-rays were passed through slits to produce narrow
 - beam, which fell on a material at centre of the spectrometer
 - Reflected (Diffracted) beam was measured in an charge coupled device (CCD)

Principle of <u>XRD</u>

Recent Development

- To characterize a material completely, need to identify the composition and structure of a material
 - GCMS, XRF and APXS can determine the composition of the element
 - XRD can determine the structure of the material
- Integration of XRD and XRF
 XRD/XRF (CheMin)
 Portable XRD/XRF (Terra)

 CheMin developed (NASA Mars Science Laboratory rover to be launched in 2011)
 Capable of getting the composition and the structure of the sample

Enabler for CheMin integration

Same source (X-ray)

An electronic area array detector

- Charge coupled device(CCD) sensitive to X-ray
 - Records fluorescent X-rays (characteristics X-rays)
 - Records diffracted X-rays that are scattered from sample

Bright rings correspond to diffraction bands; fluoresced pixels have no spatial correlation.

Architecture pinhole collimator X-ray generated by X-ray beam microfocus X-ray tube micro-focus X-ray tube Combined with pinhole Sample holder collimator Material loaded in sample holder CCD detector collects the X-ray signal of sample in term of energy and position CCD is cooled to -100°C to limit dark current Weighs 30 kg

CCD

Parties involves:

- inXitu (USA)
- NASA Ames Research Center (USA)
- Los Alamos National Laboratory (USA)
- Detector Advanced Development, Jet Propulsion Laboratory (USA)
- Indiana Univ. (USA)

Portable XRD/XRF (Terra)

- Terra developed based on CheMin technology to provide a field deployable instrument
 - Temperature or humidity sensitive minerals can experience phase transitions during transport to the laboratory.
 - Capability to analyze these materials *in-situ allows determination* of native mineralogical compositions

Portable XRD/XRF (Terra)

- Architecture developed based on CheMin
 Redesigned around a smaller CCD to save cost, mass and power.
 - ■CCD is cooled to -45°C using a Peltier cooler.
 - Collimation with miniature slits in place of pinhole to maximize throughput.
 - System includes an embedded computer to control the instrument, acquire and process data in real time, and offer a graphical user interface through a wireless link.
 - Li-ion batteries ~4 hrs of autonomous operation.
 - Complete instrument weights less than 15 kg

Portable XRD/XRF (Terra)

Parties involves:

InXitu (USA)

- Chesapeake Energy Corporation (USA)
- NASA Ames Research Center (USA)
- Earth & Env. Sciences, Los Alamos National Laboratory (USA)
- NASA Johnson Space Center (USA)
- TECSEN, Univ. Paul Cézanne (France)
- Dept. of Geological Sciences, Indiana Univ. (USA)
- Dept. of Geosciences, Univ. of Oslo (Norway)
- Earth and Planetary Exploration Services, Univ. of Oslo (Norway)
- Dept. of Geological Sciences and Geological Engineering, Queen's Univ. (Canada)

Instruments deployed by space agency

Orbiter

Infrared Spectrometry

Infrared Spectrometry

SPICAM-IR Atmospheric Spectrometer (ESA Mars Express Orbiter)

 Determining composition of atmosphere from wavelengths absorbed by constituent gases
 SPICAM-IR setup

Record amount of energy absorbed when the frequency of the infrared light is varied to form infrared spectrum

Principle of <u>IR</u>

Infrared spectrum represents sample's fingerprint

- Absorption peaks correspond to frequencies of vibrations between bonds of atoms
- Different material has unique combination of atoms, no two compounds produce same infrared spectrum.

Range of this photo detector (1.0-1.7 µm)
 Carbon dioxide (absorption at 1.43 µm and 1.57-1.6 µm bands)

■Water vapor (absorption at 1.38 µm)

Recent Development

Portable FT-IR

Advantages of Portable FT-IR

Disadvantages of Michelson interferometer

Solution with Rotary scanning interferometer

Advantages of Portable FT-IR

- Provide a rapid on-site spectroscopic information to identify the composition of sample
 - Faster measurement technique for collecting infrared spectra
 - IR light is guided through an <u>interferometer</u> (Michelson) and pass through the sample, the measured signal is interferogram
 - Performing a mathematical Fourier transform on this signal results in a spectrum
 - Portable instrument allows an analyst to take the lab to the field

Disadvantages of Michelson interferometer

- Mirror alignment sensitive to vibration, shock, temperature, and component fatigue
 - Tilt of 1 micrometer will change interferogram by >10%
- Maintaining constant alignment is a routine and costly process

Rotary scanning interferometer

- Mirrors are fixed
- Stable performance
- Repeatable rotary scan mechanism

Portable FT-IR

Specifications of portable FT-IR

Resolution:

From 4 cm⁻¹ for routine analysis up to 0.5 cm⁻¹ for high resolution work such as gas and multicomponent analysis

Higher energy near-IR (0.8-2.5 µm), wave number ~14000-4000 cm⁻¹

Dimensions: 49x39x19 cm
Power consumption: 40 W
Input voltage:12 V
Weight: 18 kg

Portable FT-IR

Parties involves:

- Tallinn Tech. Univ. (Estonia)
- Monash Univ. (Sydney)
- Interspectrum (Estonia)
- Thermo Scientific (USA)
- ABB (Germany)
- A2 Technologies (USA)
- Bruker AXS (Germany)

assignment

► Name:

- 2 types of wave that has heat effect
- 3 types of radiation that has reaction with a photographic film
- 2 types of radiation that has ionisation and kill living cell

assignment

- Determine the 4 characteristics that all the radiation share with the 4 hints given:
 - Speed of all the radiation?
 - What do all the radiation carry from place to place?
 - Could all the radiations travel from the Sun to Venus? Is there a need for a medium to enable travelling?
 - Is all the radiation longitudinal or transverse type of wave?

References

- http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2005 0205037_2005206851.pdf
- http://www.esa.int/SPECIALS/Mars_Express/SEMUC75V 9ED_0.html
- http://en.wikipedia.org/wiki/Viking_1
- http://www.unsolvedmysteries.oregonstate.edu/MS_05
- http://en.wikipedia.org/wiki/Mass_spectrometry#Gas_chro matography
- http://cmapsnasacmex.ihmc.us
- http://www.daviddarling.info/encyclopedia/V/VikingGCMS.
- http://marstech.jpl.nasa.gov/content/detail.cfm?Sect=MTP &Cat=base&subCat=SSA&subSubCat=&TaskID=2256
- http://www.innovx.com/themes/IX/graphics/xrfspectrometr y/spectrometry.html

echua@andrew.cmu.edu 16722 20090427

References

- http://serc.carleton.edu/research_education/geochemshe ets/techniques/XRF.html
- http://en.wikipedia.org/wiki/APXS
- http://mpfwww.jpl.nasa.gov/MPF/mpf/sci_desc.html
- http://www.nasaimages.org/luna/servlet/view/all/what/Alph a+Proton+X-ray+Spectrometer
- http://www.physics.pdx.edu/~pmoeck/phy381/Topic5a-XRD.pdf
- http://www.wwnorton.com/college/chemistry/gilbert/tutorial s/ch10.htm
- http://en.wikipedia.org/wiki/Scintillation_counter
- http://en.wikipedia.org/wiki/Photomultiplier
- http://www.mcswiggen.com/FAQs/FAQ_EF-6.htm
- http://en.wikipedia.org/wiki/Mars_Science_Laboratory

echua@andrew.cmu.edu 16722 20090427

In-situ materials characterization for planetary exploration

References

- P. Sarrazin, et. al., International Centre for Diffraction Data, Advances in X-ray Analysis, Volume 48 (2005)
- P. Sarrazin et. al., 39th Lunar and Planetary Science Conference (2008)
- S. M. Chemtob et. al., 40th Lunar and Planetary Science Conference (2009)
- http://en.wikipedia.org/wiki/Infrared_spectroscopy
- http://www.wooster.edu/chemistry/is/brubaker/ir/ir_works_ modern.html
- ► T. Tonnisson, IEEE Electronics Conference, 2008
- http://www.thermo.com/
- http://www.abb.com/
- http://www.a2technologies.com/
- http://www.bruker-axs.de/

echua@andrew.cmu.edu 16722 20090427

In-situ materials characterization for planetary exploration

THE END