Sensing and Sensors CMU SCS RI 16-722 S09

Sensors & Systems for Human Safety Assurance in Collaborative Exploration

Ned Fox nfox@andrew.cmu.edu

Outline

- What is collaborative exploration?
- Humans sensing robots
- Robots sensing humans
- Overseers sensing both
- Inherently safe systems
- Applications in:
 - Home care
 - Planetary exploration
 - Space station
- Conclusion

What is Collaborative Exploration?

- Robots and humans working together
- Shared environments
- Robots are your partner not your tool
- "Collaborative control" (Fong, Thorpe, Baur)

What is Collaborative Exploration?

The way it was:

ISO 10218: "Manipulating Industrial Robot-Safety", 1992. Robots should be isolated from humans and that they must be turned off when they cannot be isolated.

http://www.idspackaging.com/packaging/europe/packaging_software/244/products_category.html

What is Collaborative Exploration?

The way it will be in the future:

http://www.iastate.edu/Inside/2009/0130/alex.shtml

Where will robot collaborate?

Motivations Robotic platforms EU projects related to CWE The Robot@CWE project Human-robot collaboration Conclusions

Construction industry

Surveillance - Reception

Factory

Defense - Rescue

Space

Slide stolen from Pierro

Sensors & Systems for Human Safety Assurance in Collaborative Exploration

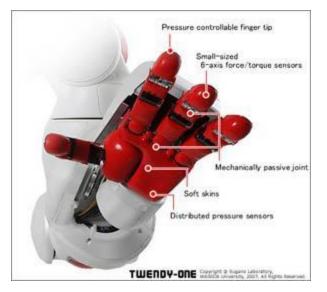
Humans Sensing Robots

- Robot signature
 - Natural appearance/sound of robot
 - Adding identifiers to robot
- Augmenting senses
- Heads up display
- Emergency stop

http://www.stratos.com/HTML/work/moptical-display.shtml

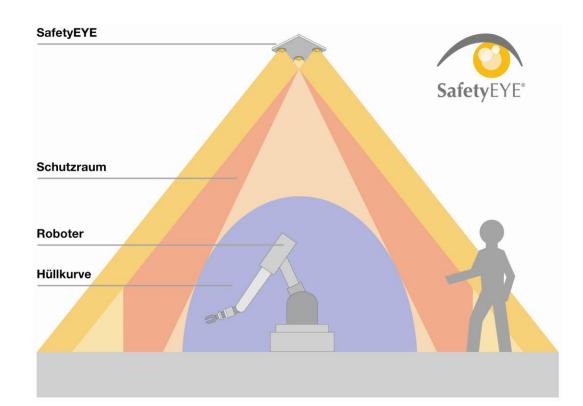
Robots Sensing Humans

- Visual detection algorithms
 - Background subtraction, then look for human feature
 - Direct detection, then using classifier
 - (See "A survey of techniques for human detection from video" by Ogale)



http://www.merl.com/projects/fasthumandetection/

Robots Sensing Humans


- Tactile sensing
 - Added benefit of robot safety
 - Finely tuned control system necessary
 - Combined with proprioception

http://www.globalspec.com/NpaPics/53/90918_010820097837_ExhibitPic.jpg

Overseers Sensing Both

- Pilz: <u>SafetyEYE</u> (developed in conjunction with DaimlerChrysler)
 - Three cameras provide three angles of video capture
 - A dedicated computer composites the streams into 3D video
 - Watches both robot and objects to make sure no collisions occur

Overseers Sensing Both

http://www.pilz.de/downloads/open/SafetyEYE_short_en_2007-12.wmv

Inherently Safe Systems

- If something known to be unsafe is about to occur, the system shuts down into a safe steady state
- eg: Nuclear reactors, joint limits on arms
- Not a safe system: <u>http://www.youtube.com/watch?v=FAh_8erW</u> <u>yQw</u>

Assignment

Watch the Star Wars clip (<u>http://www.youtube.com/watch?v=FAh_8erWyQw</u>).

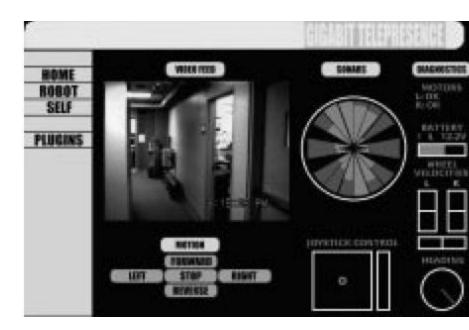
What kinds of sensors and systems could be put in place to make it an inherently safe system? Would your system change if the Dianoga (<u>http://starwars.wikia.com/wiki/Dianoga</u>) that tries to eat the Jedis was a necessary part of the compactor? Make sure to pick sensors appropriate for the environment, and try to get at least one sensor for each category – Robot sensing human, human sensing robot, and overseer sensing both.

- NurseBot (developed at CMU)
- Five primary functions:
 - Cognitive prosthesis
 - Safeguarding
 - Systematic data collection
 - Remote tele-medication
 - Social interaction
- Sensors on robot:
 - 16 ultrasonic range finders
 - SICK PLS laser range finder
 - Two CCD cameras (in eyes)
 - Microphone
- Methods of interaction with robot:
 - Touchscreen
 - Face to express "emotion"
 - Speaker
 - Remote web-access console

- Cognitive prosthesis:
 - Helping the elderly perform cognitive tasks
 - Robot uses speech recognition to listen for commands
 - Can then look up an answer online
 - Also helps user remember certain things (where bathroom is, what time to take medication, etc)

User:	Flo, hello.
Flo:	Hello. What can I do for you.
User:	Flo, what's the weather?
Flo:	Do you mean the today's weather, tomorrow's
	weather, or the current weather?
User:	Flo, the current weather.
Flo:	It is currently raining with a temperature of
	54 degrees.
User:	Flo, thanks.
User:	Flo, what's on NBC today?
Flo:	NBC is currently airing the Today Show.
User:	Flo, good-bye.
Flo:	Good-bye.

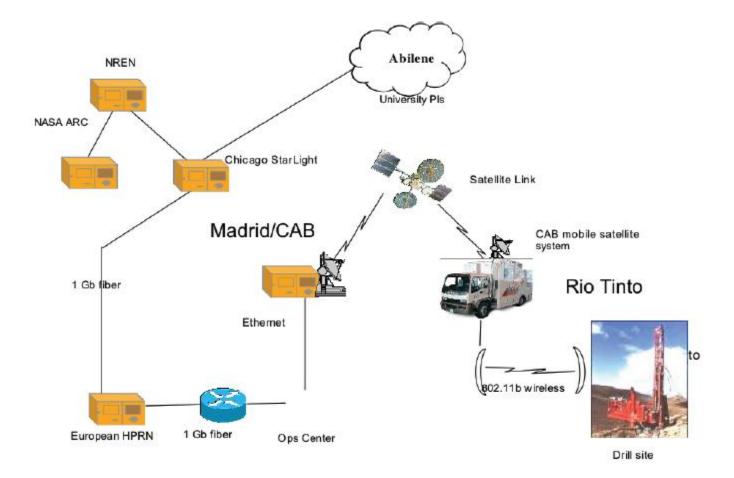
- Safeguarding
 - Systematic monitoring and safeguarding of user
 - Utilizes rangefinders to map area and create a safe zone, and cameras to watch user to make sure they do not exit safe zone



 Watches user for falls

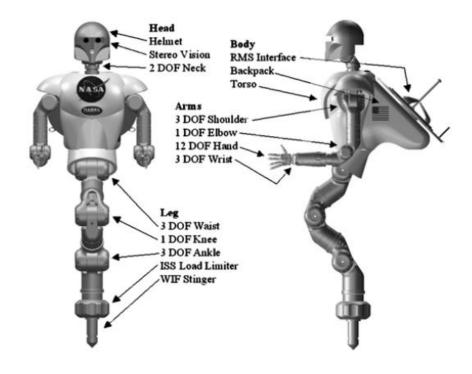
- Systematic data collection
 - Collecting data about the elderly living in private homes to benefit the health care sector
 - Utilizes cameras and microphone
 - Examples of information collected:
 - When did the user take their medications?
 - What are their daily living activities?
 - Do they have any medical warning signs?

- Remote tele-medicine
 - Relaying live video and audio to a remote physician
 - Utilizes cameras, microphone, speaker, mobile base and face
 - Manipulability of robot provides additional degrees of freedom than video conferencing



- Social interaction
 - Communicating with the user and facilitating communication between two people
 - Utilizes camera, microphone, speaker, and face

Applications: Planetary Exploration


- The Drilling Automation for Mars Exploration (DAME) project (NASA)
- Objective: collaborative subsurface exploration of a Martian impact crater
- Why collaborative?
 - Can't be fully manned due to long lag time (3-22 minutes)
 - Fully autonomous may result in failure, not an option after being sent to Mars
- Drill uses two diagnostic agents:
 - Model-based reasoning from depth sensor values
 - Neural network that perceived the vibrational frequency and modal signatures of the drill shaft

Applications: Planetary Exploration

Applications: Space Station

- Robonaut
 - Humanoid robot with dexterity almost matching a suited astronaut
 - 51 degrees of freedom
 - Objective: collaborative robot that can work in same space as astronauts, performing Extra-Vehicular Activity (EVA)

Applications: Space Station

- Subassemblies:
 - Head
 - Four cameras and a infrared temperature sensor
 - Temperature sensor is to ensure robot does not come in contact with a surface whose temperature is outside of allowable limits
 - Pair of stereo microphones and speaker
 - Hands
 - Each hand has 43 sensors, each joint has an absolute position sensor (potentiometer), and each motor has an encoder
 - Lead screw assemblies and wrist ball joint links have embedded load cells to provide force feedback
 - Endoskeleton
 - Thee six-axis load cells (located at appendage joints) provide feedback of external forces on body

Applications: Space Station

Figure 23. Working with an EVA tether hook.

Planes 24 Wheeking with a second one dotte

Figure 25. Working with EVA connectors.

ability to work with a variety of EVA tools are describein Ambrose et al. (2001).

Looking into the future when Robonaut might hav applications beyond the microgravity environment, i number of experiments have been tried with moncommon tools and other non-space related objects. These objects include geological tools, bolts and nuts crescent wrenches, socket wrenches, wire strippers and flashlights, Figs. 26 and 27. Robonaut has also performed cooperative tasks with a human including soldering and taking electrical measurements.

In Fall 2001, a mockup of a Space Station modul was built to represent a typical EVA worksite. Becaus Robonaut is mounted to a stationary base, the mocku

Sensors & Systems for Human Safety Assurance in Collaborative Exploration

Conclusion

- Collaborative robotics is the way of the future
- No new novel sensors

Integration of existing sensors is key

- Intensive processing necessary to ensure safety
- Collaborative robots especially useful in dangerous environments