|
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein
Nice, France
Sep 1990
AbstractIn this paper we develop a theory of metamodules and an associated distributed asynchronous planner which generalizes previous work on metamodules for lattice-based modular robotic systems. All extant modular robotic systems have some form of non-holonomic motion constraints. This has prompted many researchers to look to metamodules, i.e., groups of modules that act as a unit, as a way to reduce motion constraints and the complexity of planning. However, previous metamodule designs have been specific to a particular modular robot. By analyzing the constraints found in modular robotic systems we develop a holonomic metamodule which has two important properties: (1) it can be used as the basic unit of an efficient planner and (2) it can be instantiated by a wide variety of different underlying modular robots, e.g., modular robot arms, expanding cubes, hex-packed spheres, etc. Using a series of transformations we show that our practical metamodule system has a provably complete planner. Finally, our approach allows the task of shape transformation to be separated into a planning task and a resource allocation task. We implement our planner for two different metamodule systems and show that the time to completion scales linearly with the diameter of the ensemble.
download pdf
@inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {Sep},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
Related Papers
Planning |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
Sep 1990.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {Sep},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Declarative Programming for Modular Robots | pdf bib | |
Michael P. Ashley-Rollman, Michael De Rosa, Siddhartha S. Srinivasa, Padmanabhan Pillai, Seth Copen Goldstein, and Jason D. Campbell.
In Workshop on Self-Reconfigurable Robots/Systems and Applications at IROS '07,
Oct 1990.
|
| @inproceedings{ashley-rollman-derosa-iros07wksp,
author = {Ashley-Rollman, Michael P. and De~Rosa, Michael and
Srinivasa, Siddhartha S. and Pillai, Padmanabhan and Goldstein,
Seth Copen and Campbell, Jason D.},
title = {Declarative Programming for Modular Robots},
booktitle = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at {IROS '07}},
year = {2007},
month = {Oct},
keywords = {Claytronics, Programming Models, Planning, LDP, Meld},
abstract = {Because of the timing, complexity, and asynchronicity
challenges common in modular robot software we have recently
begun to explore new programming models for modular robot
ensembles. In this paper we apply two of those models to a
metamodule-based shape planning algorithm and comment on the
differences between the two approaches. Our results suggest that
declarative programming can provide several advantages over more
traditional imperative approaches, and that the differences
between declarative programming styles can themselves contribute
leverage to different parts of the problem domain.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-derosa-iros07wksp.pdf},
}
|
|
Movement Primitives for an Orthogonal Prismatic Closed-Lattice-Constrained Self-Reconfiguring Module | pdf bib | |
Michael Philetus Weller, Mustafa Emre Karagozler, Brian Kirby, Jason D. Campbell, and Seth Copen Goldstein.
In Workshop on Self-Reconfiguring Modular Robotics at the IEEE International Conference on Intelligent Robots and Systems (IROS) '07,
Oct 1990.
|
| @inproceedings{weller-iros07,
author = {Weller, Michael Philetus and Karagozler, Mustafa Emre and
Kirby, Brian and Campbell, Jason D. and Goldstein, Seth Copen},
title = {Movement Primitives for an Orthogonal Prismatic
Closed-Lattice-Constrained Self-Reconfiguring Module},
booktitle = {Workshop on Self-Reconfiguring Modular Robotics at the
IEEE International Conference on Intelligent Robots and Systems
(IROS) '07},
year = {2007},
month = {Oct},
keywords = {Claytronics, Adhesion, Robotics, Planning},
abstract = {We describe a new set of prismatic movement primitives
for cubic modular robots. Our approach appears more practical
than previous metamodule-based approaches. We also describe
recent hardware developments in our cubic robot modules that have
sufficient stiffness and actuator strength so that when they work
together they can realize, in earth's gravity, all of the motion
primitives we describe here.},
url = {http://www.cs.cmu.edu/~claytronics/papers/weller-iros07.pdf},
}
|
|
Hierarchical Motion Planning for Self-reconfigurable Modular Robots | pdf bib | |
Preethi Srinivas Bhat, James Kuffner, Seth Copen Goldstein, and Siddhartha Srinivasa.
In 2006 IEEE/RSJ International Confernce on Intelligent Robots and Systems (IROS),
Oct 1990.
|
| @inproceedings{bhat06,
author = {Bhat, Preethi Srinivas and Kuffner, James and Goldstein,
Seth Copen and Srinivasa, Siddhartha},
title = {Hierarchical Motion Planning for Self-reconfigurable
Modular Robots},
booktitle = {2006 IEEE/RSJ International Confernce on Intelligent
Robots and Systems (IROS)},
year = {2006},
month = {Oct},
keywords = {Claytronics, Planning, Modular Robotics},
url = {http://www.cs.cmu.edu/~seth/papers/bhat06.pdf},
}
|
|
Scalable Shape Sculpting via Hole Motion: Motion Planning in Lattice-Constrained Module Robots | pdf bib | |
Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason D. Campbell, and Padmanabhan Pillai.
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA '06),
May 1990.
|
| @inproceedings{derosa-icra06,
author = {De~Rosa, Michael and Goldstein, Seth Copen and Lee, Peter
and Campbell, Jason D. and Pillai, Padmanabhan},
title = {Scalable Shape Sculpting via Hole Motion: Motion Planning
in Lattice-Constrained Module Robots},
month = {May},
booktitle = {Proceedings of the 2006 {IEEE} International Conference
on Robotics and Automation (ICRA '06)},
year = {2006},
keywords = {Claytronics, Programmable Matter, Planning, Modular
Robotics},
url = {http://www.cs.cmu.edu/~seth/papers/derosa-icra06.pdf},
abstract = {We describe a novel shape formation algorithm for
ensembles of 2-dimensional lattice-arrayed modular robots, based
on the manipulation of regularly shaped voids within the lattice
(``holes''). The algorithm is massively parallel and fully
distributed. Constructing a goal shape requires time propor-
tional only to the complexity of the desired target geometry.
Construction of the shape by the modules requires no global
communication nor broadcast floods after distribution of the
target shape. Results in simulation show 97.3\% shape compliance
in ensembles of approximately 60,000 modules, and we believe that
the algorithm will generalize to 3D and scale to handle millions
of modules.},
}
|
Multi-Robot Formations |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
Sep 1990.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {Sep},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
A Scalable Distributed Algorithm for Shape Transformation in Multi-Robot Systems | pdf bib | |
Ramprasad Ravichandran, Geoffrey Gordon, and Seth Copen Goldstein.
In Proceedings of the IEEE International Conference on Intelligent Robots and Systems IROS '07,
Oct 1990.
|
| @inproceedings{ravichandran-iros07,
author = {Ravichandran, Ramprasad and Gordon, Geoffrey and
Goldstein, Seth Copen},
title = {A Scalable Distributed Algorithm for Shape Transformation
in Multi-Robot Systems},
booktitle = {Proceedings of the IEEE International Conference on
Intelligent Robots and Systems {IROS '07}},
year = {2007},
month = {Oct},
keywords = {Claytronics, Multi-Robot Formations},
abstract = {Distributed reconfiguration is an important problem in
multi-robot systems such as mobile sensor nets and metamorphic
robot systems. In this work, we present a scalable distributed
reconfiguration algorithm, Hierarchical Median Decomposition, to
achieve arbitrary target configurations. Our algorithm is built
on top of a novel distributed median consensus estimator. The
algorithms presented are fully distributed and do not require
global communication. We show results from simulations in an open
source multi-robot simulator.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ravichandran-iros07.pdf},
}
|
Meld |
|
A Language for Large Ensembles of Independently Executing Nodes | pdf bib | |
Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai, and Jason D. Campbell.
In Proceedings of the International Conference on Logic Programming (ICLP '09),
Jul 1990.
|
| @inproceedings{ashley-rollman-iclp09,
author = {Ashley-Rollman, Michael P. and Lee, Peter and Goldstein,
Seth Copen and Pillai, Padmanabhan and Campbell, Jason D.},
booktitle = {Proceedings of the International Conference on Logic
Programming (ICLP '09)},
title = {A Language for Large Ensembles of Independently Executing
Nodes},
year = {2009},
month = {Jul},
keywords = {Distributed Systems, Meld, Programming Languages},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-iclp09.pdf},
abstract = {We address how to write programs for distributed
computing systems in which the network topology can change
dynamically. Examples of such systems, which we call {\em
ensembles}, include programmable sensor networks (where the
network topology can change due to failures in the nodes or
links) and modular robotics systems (whose physical configuration
can be rearranged under program control). We extend Meld, a logic
programming language that allows an ensemble to be viewed as a
single computing system. In addition to proving some key
properties of the language, we have also implemented a complete
compiler for Meld. It generates code for TinyOS and for a
Claytronics simulator. We have successfully written correct,
efficient, and complex programs for ensembles containing over one
million nodes.},
booktitle = {Proceedings of the International Conference on Logic
Programming (ICLP '09)},
}
|
|
Distributed Localization of Modular Robot Ensembles | pdf bib | |
Stanislav Funiak, Padmanabhan Pillai, Michael P. Ashley-Rollman, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of Robotics: Science and Systems,
Jun 1990.
See funiak-ijrr09.
|
| |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
Sep 1990.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {Sep},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Declarative Programming for Modular Robots | pdf bib | |
Michael P. Ashley-Rollman, Michael De Rosa, Siddhartha S. Srinivasa, Padmanabhan Pillai, Seth Copen Goldstein, and Jason D. Campbell.
In Workshop on Self-Reconfigurable Robots/Systems and Applications at IROS '07,
Oct 1990.
|
| @inproceedings{ashley-rollman-derosa-iros07wksp,
author = {Ashley-Rollman, Michael P. and De~Rosa, Michael and
Srinivasa, Siddhartha S. and Pillai, Padmanabhan and Goldstein,
Seth Copen and Campbell, Jason D.},
title = {Declarative Programming for Modular Robots},
booktitle = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at {IROS '07}},
year = {2007},
month = {Oct},
keywords = {Claytronics, Programming Models, Planning, LDP, Meld},
abstract = {Because of the timing, complexity, and asynchronicity
challenges common in modular robot software we have recently
begun to explore new programming models for modular robot
ensembles. In this paper we apply two of those models to a
metamodule-based shape planning algorithm and comment on the
differences between the two approaches. Our results suggest that
declarative programming can provide several advantages over more
traditional imperative approaches, and that the differences
between declarative programming styles can themselves contribute
leverage to different parts of the problem domain.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-derosa-iros07wksp.pdf},
}
|
|
Meld: A Declarative Approach to Programming Ensembles | pdf bib | |
Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai.
In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS '07),
Oct 1990.
|
| @inproceedings{ashley-rollman-iros07,
author = {Ashley-Rollman, Michael P. and Goldstein, Seth Copen and
Lee, Peter and Mowry, Todd C. and Pillai, Padmanabhan},
title = {Meld: A Declarative Approach to Programming Ensembles},
booktitle = {Proceedings of the IEEE International Conference on
Intelligent Robots and Systems ({IROS '07})},
year = {2007},
month = {Oct},
keywords = {Claytronics, Programming Languages, Meld},
abstract = {This paper presents Meld, a programming language for
modular robots, i.e., for independently executing robots where
inter-robot communication is limited to immediate neighbors. Meld
is a declarative language, based on P2, a logic-programming
language originally designed for programming overlay networks. By
using logic programming, the code for an ensemble of robots can
be written from a global perspective, as opposed to a large
collection of independent robot views. This greatly simplifies
the thought process needed for programming large ensembles.
Initial experience shows that this also leads to a considerable
reduction in code size and complexity. An initial implementation
of Meld has been completed and has been used to demonstrate its
effectiveness in the Claytronics simulator. Early results
indicate that Meld programs are considerably more concise (more
than 20x shorter) than programs written in C++, while running
nearly as efficiently.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-iros07.pdf},
}
|
Robotics |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
Sep 1990.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {Sep},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Movement Primitives for an Orthogonal Prismatic Closed-Lattice-Constrained Self-Reconfiguring Module | pdf bib | |
Michael Philetus Weller, Mustafa Emre Karagozler, Brian Kirby, Jason D. Campbell, and Seth Copen Goldstein.
In Workshop on Self-Reconfiguring Modular Robotics at the IEEE International Conference on Intelligent Robots and Systems (IROS) '07,
Oct 1990.
|
| @inproceedings{weller-iros07,
author = {Weller, Michael Philetus and Karagozler, Mustafa Emre and
Kirby, Brian and Campbell, Jason D. and Goldstein, Seth Copen},
title = {Movement Primitives for an Orthogonal Prismatic
Closed-Lattice-Constrained Self-Reconfiguring Module},
booktitle = {Workshop on Self-Reconfiguring Modular Robotics at the
IEEE International Conference on Intelligent Robots and Systems
(IROS) '07},
year = {2007},
month = {Oct},
keywords = {Claytronics, Adhesion, Robotics, Planning},
abstract = {We describe a new set of prismatic movement primitives
for cubic modular robots. Our approach appears more practical
than previous metamodule-based approaches. We also describe
recent hardware developments in our cubic robot modules that have
sufficient stiffness and actuator strength so that when they work
together they can realize, in earth's gravity, all of the motion
primitives we describe here.},
url = {http://www.cs.cmu.edu/~claytronics/papers/weller-iros07.pdf},
}
|
|
Ultralight Modular Robotic Building blocks for the Rapid Deployment of Planetary Outposts | pdf bib | |
Mustafa Emre Karagozler, Brian Kirby, W.J. Lee, Eugene Marinelli, T.C. Ng, Michael Weller, and Seth Copen Goldstein.
In Revolutionary Aerospace Systems Concepts Academic Linkage (RASC-AL) Forum 2006,
May 1990.
|
| @inproceedings{karagozler-rascal06,
title = {Ultralight Modular Robotic Building blocks for the Rapid
Deployment of Planetary Outposts},
booktitle = {Revolutionary Aerospace Systems Concepts Academic
Linkage (RASC-AL) Forum 2006},
author = {Karagozler, Mustafa Emre and Kirby, Brian and Lee, W.J.
and Marinelli, Eugene and Ng, T.C. and Weller, Michael and
Goldstein, Seth Copen},
year = {2006},
month = {May},
address = {Cape Canaveral, FL},
url = {http://www.cs.cmu.edu/~seth/papers/karagozler-rascal06.pdf},
keywords = {Claytronics,Modular Robotics,Robotics},
}
|
|
Catoms: Moving Robots Without Moving Parts | pdf bib | |
Brian Kirby, Jason D. Campbell, Burak Aksak, Padmanabhan Pillai, James F. Hoburg, Todd C. Mowry, and Seth Copen Goldstein.
In AAAI (Robot Exhibition),
pages 1730–1, Jul 1990.
|
| @inproceedings{kirby-aaai05,
author = {Kirby, Brian and Campbell, Jason D. and Aksak, Burak and
Pillai, Padmanabhan and Hoburg, James F. and Mowry, Todd C. and
Goldstein, Seth Copen},
title = {Catoms: Moving Robots Without Moving Parts},
url = {http://www.cs.cmu.edu/~seth/papers/kirby-aaai05.pdf},
booktitle = {AAAI (Robot Exhibition)},
pages = {1730--1},
year = {2005},
month = {Jul},
address = {Pittsburgh, PA},
keywords = {Claytronics, Robotics},
}
|
|
The Ensemble Principle | pdf bib | |
Seth Copen Goldstein, Todd C. Mowry, Jason D. Campbell, Peter Lee, Padmanabhan Pillai, James F. Hoburg, Phillip B. Gibbons, Carlos Guestrin, James Kuffner, Brian Kirby, Benjamin D. Rister, Michael De Rosa, Stanislav Funiak, Burak Aksak, and Rahul Sukthankar.
In 13th Foresight Conference of Advanced Nanotechnogy,
Oct 1990.
|
| @inproceedings{goldstein05,
author = {Goldstein, Seth Copen and Mowry, Todd C. and Campbell,
Jason D. and Lee, Peter and Pillai, Padmanabhan and Hoburg, James
F. and Gibbons, Phillip B. and Guestrin, Carlos and Kuffner,
James and Kirby, Brian and Rister, Benjamin D. and De~Rosa,
Michael and Funiak, Stanislav and Aksak, Burak and Sukthankar,
Rahul},
title = {The Ensemble Principle},
booktitle = {13th Foresight Conference of Advanced Nanotechnogy},
url = {http://www.cs.cmu.edu/~seth/papers/goldstein05.pdf},
year = {2005},
month = {Oct},
address = {San Francisco, CA},
keywords = {Claytronics, Robotics},
}
|
|
The Robot is the Tether: Active, Adaptive Power Routing for Modular Robots With Unary Inter-robot Connectors | pdf bib | |
Jason D. Campbell, Padmanabhan Pillai, and Seth Copen Goldstein.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005),
pages 4108–15, Aug 1990.
|
| @inproceedings{campbell05,
author = {Campbell, Jason D. and Pillai, Padmanabhan and Goldstein,
Seth Copen},
title = {The Robot is the Tether: Active, Adaptive Power Routing for
Modular Robots With Unary Inter-robot Connectors},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005)},
pages = {4108--15},
year = {2005},
address = {Edmonton, Alberta Canada},
month = {Aug},
keywords = {Claytronics, Robotics},
url = {http://www.cs.cmu.edu/~seth/papers/campbell05.pdf},
}
|
|
Claytronics: A scalable basis for future robots | pdf bib | |
Seth Copen Goldstein and Todd C. Mowry.
In RoboSphere 2004,
Nov 1990.
|
| @inproceedings{goldstein-robosphere04,
author = {Goldstein, Seth Copen and Mowry, Todd C.},
title = {Claytronics: A scalable basis for future robots},
booktitle = {RoboSphere 2004},
address = {Moffett Field, CA},
month = {Nov},
year = {2004},
keywords = {Claytronics, Robotics},
url = {http://www.cs.cmu.edu/~seth/papers/goldstein-robosphere04.pdf},
}
|
Controlling Ensembles |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
Sep 1990.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {Sep},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
Back to publications list
|