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Trajectory-Based Optimal
Control Techniques

n a not too distant future, robots will be a natural part of

daily life in human society, providing assistance in many

areas ranging from clinical applications, education and care

giving, to normal household environments [1]. It is hard to

imagine that all possible tasks can be preprogrammed in such
robots. Robots need to be able to learn, either by themselves
or with the help of human supervision. Additionally, wear and
tear on robots in daily use needs to be automatically compen-
sated for, which requires a form of continuous self-calibration,
another form of learning. Finally, robots need to react to sto-
chastic and dynamic environments, i.e., they need to learn
how to optimally adapt to uncertainty and unforeseen
changes. Robot learning is going to be a key ingredient for the
future of autonomous robots.

While robot learning covers a rather large field, from learn-
ing to perceive, to plan, to make decisions, etc., we will focus
this review on topics of learning control, in particular, as it is
concerned with learning control in simulated or actual physi-
cal robots. In general, learning control refers to the process of
acquiring a control strategy for a particular control system and
a particular task by trial and error. Learning control is usually
distinguished from adaptive control [2] in that the learning sys-
tem can have rather general optimization objectives—not just,
e.g., minimal tracking error—and is permitted to fail during
the process of learning, while adaptive control emphasizes fast
convergence without failure. Thus, learning control resembles
the way that humans and animals acquire new movement
strategies, while adaptive control is a special case of learning
control that fulfills stringent performance constraints, e.g., as
needed in life-critical systems like airplanes.

Learning control has been an active topic of research for at
least three decades. However, given the lack of working robots
that actually use learning components, more work needs to be
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done before robot learning will make it beyond the laboratory
environment. This article will survey some ongoing and past
activities in robot learning to assess where the field stands and
where it is going. We will largely focus on nonwheeled robots
and less on topics of state estimation, as typically explored in
wheeled robots [3]-6], and we emphasize learning in continuous
state-action spaces rather than discrete state-action spaces [7], [8].
We will illustrate the different topics of robot learning with
examples from our own research with anthropomorphic and
humanoid robots.

The Basics of Learning Control

A key question in learning control is what it is that should be
learned. To address this issue, it is helpful to begin with one of
the most general frameworks of learning control, as originally
developed in the middle of the 20th century in the fields of
optimization theory, optimal control, and in particular,
dynamic programming [9], [10]. Here, the goal of learning
control was formalized as the need to acquire a task-dependent
control policy 7 that maps a continuous-valued state vector x
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ofa controlled system and its environment, possibly in a time ¢
dependent way, to a continuous-valued control vector u:

u = n(x,t,0). 1)

The parameter vector 8 contains the problem-specific
parameters in the policy 7 that need to be adjusted by the
learning system. The controlled system can generally be
expressed as a nonlinear dynamics function

x=f(x,u,18,) )
with observation equations
y =hx u,t¢) )

that describe how the observations y of the system are derived
from the full-state vector x—the terms &, and &, denote noise
terms. Thus, learning control means finding a (usually nonlin-
ear) function 7 that is adequate for a given desired behavior
and movement system. A repertoire of motor skills is com-
posed of many such policies that are sequenced and superim-
posed to achieve complex motor skills.

How the control policy is learned, however, can proceed in
many different ways. Assuming that the model equations (2) and
(3) are unknown, one classical approach is to learn these models
using methods of function approximation and then compute a
controller based on the estimated model, which is often discussed
as the certainty-equivalence principle in the adaptive control liter-
ature [2]. Such techniques are summarized under the name
model-based learning, indirect learning, or internal model learn-
ing. Alternatively, model-free learning of the policy is possible
given an optimization or reward criterion, usually using methods
from optimal control or reinforcement learning. Such model-free
learning is also known as direct learning, since the policy is learned
directly, i.e., without a detour through model identification.

It is useful to distinguish between several general classes of
motor tasks that could be the goal of learning. Regulator tasks
keep the system at a particular set point

From the viewpoint of machine learning, robot learning can
be classified as supervised learning, reinforcement learning,
learning modularizations, or learning feature representations
that subserve learning. All learning methods can benefit from
giving the learning system prior knowledge about how to
accomplish a motor task, and imitation learning or learning
from demonstration is a popular approach to introduce this bias.

In summary, the goal of robot learning is to find an appro-
priate control policy to accomplish a given movement task,
assuming that no traditional methods exist to compute the
control policy. Approaches to robot learning can be classified
and discussed using three dimensions: direct versus indirect
control, the learning method used, and the class of tasks in
question (Figure 1).

Approaches to Robot Learning

We will use the classification in Figure 1 in the following sec-
tions to guide our survey of current and previous work in robot
learning. Given space constraints, this survey is not meant to be
comprehensive but rather to present illustrative projects in the
various areas.

Learning Internal Models for Control

Using learning to acquire internal models for control is useful
when the analytical models are too complex to derive, and/or
when it can be expected that the models change over time, e.g.,
due to wear and tear. Various kinds of internal models are used in
robotics. The most well known are kinematics and dynamic
models. For instance, the direct kinematics of a robot relates joint
variables q to end-effector varables y, ie., y = g(q) [11].
Dynamics models include kinetic terms like forces or torques, as
in (2). The previous models are forward models, i.e., they model
the causal relationship between input and output variables, and
they are proper functions. Often, however, what is needed in
control are inverse models, e.g., the inverse kinematics q =
g '(y) or the inverse dynamics u = £7'(q, q, 7). As discussed in
[12], inverse models are often not functions, as the inverse rela-
tionships may be a one-to-many map, i.e., just a relation. Such

of operation—a typical example is bal-
ancing a pole on a fingertip or standing
upright on two legs. Tracking tasks
require the control system to follow a
given desired trajectory within the abil-
ities of the control system. Discrete
movement tasks, also called one-shot
tasks, are defined by achieving a particu-
lar goal at which the motor skill termi-
nates. A basketball foul shot or grasping a
cup of coffee are representative exam-
ples. Periodic movement tasks are typical
in the domain of locomotion. At last,
complex movement tasks are composed
of sequencing and superimposing simpler

Direct Versus Indirect Control

Model-Free Control
Model-Based Control

Regulator Task

One-Shot Tasks
Periodic Tasks
Complex/Composite Tasks

Learning Method

Imitation Learning
Learning Representations
Learning Modularity
Reinforcement Learning

Supervised Learning

Tracking Task

Class of Task

motor skills, e.g., leading to complex

manipulation skills like emptying a dish-
washer or assembling a bookshelf.
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Figure 1. Classification of robot learning along three dimensions. Topics further out
on the arrows can be considered more complex research topics than topics closer to
the center.

IEEE Robotics & Automation Magazine (@Al



cases pose a problem to learning methods and can be addressed
with special techniques and representations [13]-[16].

Nonlinear function approximation is needed to learn inter-
nal models. It should be noted, as will be explained later, that
function approximation is also required for other robot learning
problems, e.g., to represent value functions, reward functions,
or policies in reinforcement learning—thus, function approxi-
mation has a wide applicability in robot learning. While most
machine-learning problems in function approximation work by
processing a given data set in an offline fashion, robot learning
has several features that require specialized algorithms:

& data are available in abundance, typically at a rate from

60 to 1,000 data points per second

@ given this continuous stream of data, learning should
never stop, but continue forever without degradation
over time. For instance, degradation happens in many
algorithms if the same data point is given to the learning
system repeatedly, e.g., when the robot is standing still

o given the high dimensionality of most interesting
robotic systems, the complexity of the function to be
learned is often unknown in advance, and the function
approximation system needs to be able to add new
learning resources as learning proceeds

¢ learning should happen in real time, be data efficient
(squeeze the most information out of each data point),
and be computationally efficient (to achieve real-time
learning and lookup)

@ learning needs to be robust toward shifting input distri-
butions, e.g., as typical when practicing calligraphy on
one day and tennis on another day, a topic discussed in
the context of catastrophic interference [17]

¢ learning needs to be able to detect relevant features in
the input from ideally hundreds or thousands of input
dimensions, and it needs to exclude automatically irrele-
vant and redundant inputs.

These requirements narrow down the learning algorithms
that are applicable to function approximation for robot learn-
ing. One approach that has favorable performance is learning
with piecewise linear models using nonparametric regression
techniques [17]—[22]. Essentially, this technique finds, in the
spirit of a first-order Taylor series expansion, the linearization

of the function at an input point, and the region (also called a
kernel) in which this linearization holds within a certain error
bound. Learning this region is the most complex part of these
techniques, and the latest developments use Bayesian statistics
[23] and dimensionality reduction [22].

A new development, largely due to increasingly faster com-
puting hardware, is the application of Gaussian process regres-
sion (GPR) to function approximation in robots [24]-[26].
GPR is a powerful function approximation tool that has
gained popularity due to its sound theory, high fitting accu-
racy, and the relative ease of application with public-domain
software libraries. As it requires an iterative optimization that
needs to invert a matrix of size N X N, where Nis the number
of training data points, GPR quickly saturates the computa-
tional resources with moderately many data points. Thus, scal-
ability to continual and real-time learning in complex robots
will require further research developments; some research
along these lines is given in [25] and [27].

Example Application

As mentioned earlier, learning inverse models can be challeng-
ing, since the inverse model problem is often a relation and not
a function, with a one-to-many mapping. Applying any arbi-
trary nonlinear function approximation method to the inverse
model problem can lead to unpredictably bad performance, as
the training data can form nonconvex solution spaces in which
averaging is inappropriate [12]. A particularly interesting
approach in control involves learning local linearizations of a
forward model (which is a proper function) and learning an
inverse mapping within the local region of the forward model;
see also [15] and [28].

Ting et al. [23] demonstrated such a forward-inverse model
learning approach with Bayesian locally weighted regression
(BLWR) to learn an inverse kinematics model for a haptic
robot arm (Figure 2) for a task-space tracking task. Training
data consisted of the arm’s joint angles q, joint velocities q,
end-effector position in Cartesian space y, and end-effector
velocities y. From this data, a differential forward kinematics
model y = J(q)q was learned, where J is the Jacobian matrix.
The transformation from ¢ to y can be assumed to be locally
linear at a particular configuration q of the robot arm. BLWR

is used to learn the forward model in a

piecewise linear fashion.

— Desired
Learned IK

0.2

z (m)
o

The goal of the robot task is to track a
desired trajectory (y, y) specified only in
______ terms of x, z Cartesian positions and
velocities, i.e., the movement is sup-
posed to be in a vertical plane in front of

the robot, but the exact position of the

(a) (b)

or \ | vertical plane is not given. Thus, the task

\ N has one degree of redundancy. To learn

Ll _61 _0'05 (') 0 65 0'1 - an inverse kinematics model, the local
. - X (m) . regions from the piecewise linear for-

ward model can be reused since any local
inverse is also locally linear within these

Figure 2. (a) Phantom robot. (b) Learned-inverse kinematics solution, the difference

between the actual and desired trajectory is small.
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regions. Moreover, for locally linear
models, all solution spaces for the inverse
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model are locally convex, such that an inverse can be learned
without problems. The redundancy issue can be solved by
applying an additional weight to each data point according to a
reward function, resulting in
weighted regression [15].

Figure 2 shows the performance of the learned inverse model

reward-weighted locally

(Learned IK) in a figure-eight tracking task. The learned model
as well as the analytical inverse kinematics solution performs
with root-mean-squared tracking errors in positions and veloc-
ities very close to that of the analytical solution. This perform-
ance was acquired from five minutes of real-time training data.

Model-Based Learning

In considering model-based learning, it is useful to start by
assuming that the model is perfect. Later, we will address the
question of how to design a controller that is robust to flaws in
the learned model.

Conventional Dynamic Programming

Designing controllers for linear models is well understood. Work
in reinforcement learning has focused using techniques derived
from dynamic programming to design controllers for models
that are nonlinear. A large part of our own work has emphasized
pushing back the curse of dimensionality, as the memory and
computational cost of dynamic programming increase exponen-
tially with the dimensionality of the state-action space.

Dynamic programming provides a way to find globally
optimal control policies when the model of the control system
is known. This section focuses on offline planning of nonlinear
control policies for control problems with continuous states
and actions, deterministic time invariant discrete time dynam-
ics, X1 = f(xy, uy), and a time-invariant one-step cost or
reward function L(x,u)—equivalent formulations exist for
continuous time systems [29]—[31]. We are addressing steady-
state policies, i.e., policies that are not time variant and have an
infinite time horizon. One approach to dynamic programming
is to approximate the value function V(x) (the optimal total
future cost from each state 1(x) = ming, » o, L(Xk, ux)) by
repeatedly solving the Bellman equation V/(x) = miny,
{L(x,u) + V(f(x,u))} at sampled states x until the value
function estimates have converged to globally optimal val-
ues. Typically, the value function and control law are repre-
sented on a regular grid—it should be noted that more
efficient adaptive grid methods [32], [33] or function approx-
imation methods [7] also exist. Some type of interpolation is
used to approximate these functions within each grid cell. If
each dimension of the state and action is represented with a
resolution R, and the dimensionality of the state is d,. and that
of the action is d,, the computational cost of the conven-
tional approach is proportional to R%* X R% and the memory
cost is proportional to R%. This is known as the curse of
dimensionality [9].

We have shown that dynamic programming can be sped up
by randomly sampling actions on each sweep rather than
exhaustively minimizing the Bellman equation with respect to
the action [34]. At each state on each update, the current best
action is reevaluated and compared to some number of random
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actions. Our studies have found that only looking at one ran-
dom action on each update is most efficient. It is more effective
to propagate information about future values by reevaluating
the current best action on each update than it is to put a lot of
resources into searching for the absolute best action.

With this speedup in action search, currently available
cluster computers can easily handle ten-dimensional problems
(approximately 10"’ points can handle grids of size 50°, 20°, or
10", for example). Current supercomputers are created by net-
working hundreds or thousands of conventional computers.
The obvious way to implement dynamic programming on
such a cluster is to partition the grid representing the value
function and policy across the individual computing nodes,
with the borders shared between multiple nodes. When a
border cell is updated by its host node, the new value must be
communicated to all nodes that have copies of that cell. We
have implemented dynamic programming in a cluster of up to
100 nodes, with each node having eight CPU cores and 16 GB
of memory. For example, running a cluster of 40 nodes on a
six-dimensional problem with 50° cells, about 6 GB is used on
each node to store its region of the value function and policy.

Decomposing Problems

One way to reduce the curse of dimensionality is to break
problems into parts and develop a controller for each part sep-
arately. Each subsystem could be ten-dimensional, given the
earlier results, and a system that combined two subsystems
could be 20 dimensional. For example, we are interested in
developing a controller for biped walking [35]. We can
approximately model the dynamics of a biped with separate
models for sagittal and lateral control. These models are linked
by common actions, such as when to put down and lift the
feet. Thus, there are two parts of the state vector x: variables
that are part of the sagittal state x, and variables that are part of
the lateral state x;. There are three parts of the action vector u:
variables that are part of the sagittal action u,, variables that are
part of the lateral action u;, and variables that affect both sys-
tems u,. We can perform dynamic programming on the sagit-
tal system and produce a value function V(x,) and do the same
with the lateral system 1/)(x;). We can choose an optimal action
by minimizing L((x,u) + V(f(x,u)) with respect to u, with
I(x) approximated by IV (x,) + Vj(x). This approximation
ignores the linking of the two systems in the future and can be
improved by adding elements to the one-step costs for each
subsystem that bias the shared actions to behave as if the other
system was present. For example, deviations from the timing
usually seen in the complete system can be penalized.

Trajectory Optimization and Trajectory Libraries

Another way to handle complex systems is trajectory optimiza-
tion. Given a model, a variety of approaches can be used to find
a locally optimal sequence of commands for a given initial posi-
tion and one-step cost [36]—[38]. Interestingly, trajectory optimi-
zation is quite popular for generating motion in animation [39].
However, trajectory optimization is not so popular in robotics,
because it appears that it does not produce a control law but just
a fixed sequence of commands. This is not a correct view.
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To generate a control policy, trajectory optimization can
be applied to many initial conditions, and the resulting com-
mands can be interpolated as needed. If that is the case, why
do we need to deal with dynamic programming and the curse
of dimensionality? Dynamic programming is a global opti-
mizer, while trajectory optimization finds local optima. Often,
the local optima found are not acceptable. Some way to bias
trajectory optimization to produce reasonable trajectories
would be useful. Also, if interpolation of the results will be
done, it would be useful to produce consistent results so that
similar initial conditions lead to similar costs. There may be
discontinuities between nearby trajectories that must be
handled by interpolation of actions.

One trick to improve trajectories is to use neighboring tra-
jectories to somehow bias or guide the optimization process. A
simple way to do this is to use a neighboring trajectory as the
initial trajectory in the trajectory-optimization process. Trajec-
tories can be reoptimized using each neighbor in turn as the
initial trajectory, and the best result so far can be retained. We
have explored building explicit libraries of optimized trajecto-
ries to handle large perturbations in bipedal standing balance
[40]. One way of using the library is to use the optimized
action corresponding to the nearest state in the library at each
time step. Another way is to store the derivative of the opti-
mized action with respect to state and use that derivative to
modify the suggested action. A third way is to look up states
from multiple trajectories and generate a weighted blend of
the suggested actions.

The first and second derivatives of a trajectory’s cost with
respect to state can be used to generate a local Taylor series
model of the value function: V(x) = V, + Vx + XTI X.
Given a quadratic local model of the value function, it is possible
to compute the optimal action and its first derivative, the feed-
back gains. These observations led to a trajectory optimization
method based on second-order gradient descent, differential
dynamic programming (DDP) [29]. Although this trajectory
optimization method is no longer considered the most efficient
way to find an optimal trajectory [sequential quadratic program-
ming (SQP) methods are currently preferred in many fields such
as aerospace and animation], the local models of the value func-
tion and policy that DDP produces are useful for machine

Figure 3. The robot swinging up an inverted pendulum.
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learning. For example, the local model of the policy can be used
in a trajectory library to interpolate or extrapolate actions. Dis-
crepancies in adjacent local models of the value function can be
used to determine where to allocate additional library resources.

Robustness

Robustness has not been addressed well in robot learning.
Studies often focus on robustness to additive noise. It is much
more difficult to design controllers that are robust to the corre-
lated errors caused by parameter error or model structure
error. One approach to designing robust controllers is to opti-
mize controller parameters by simulating a controller control-
ling a noisy robot [41]. It is more useful to optimize controller
parameters controlling a set of robots, each with different
robot parameters. This allows the effect of correlated control-
ler errors across time to be handled in the optimization.

It is not clear how to perform a similar optimization over a
set of models in dynamic programming. Using additive noise
and performing stochastic dynamic programming does not
capture the effect of correlated errors. One approach is to
make the model parameters into model states and perform sto-
chastic dynamic programming on information states that
describe distributions of actual states and model parameters.
However, this creates a large increase in the number of states,
which is not practical for dynamic programming.

Bar-Shalom and Tse showed that DDP can be used to
locally optimize controller robustness as well as exploration
[42], [43]. This work provides an efficient solution to optimize
the typically high-dimensional information state, which
includes the means and covariances of the original model states
and the means and covariances of the model parameters.
Representing the uncertainty using a parametric probability
distribution (means and covariances) also reduces the compu-
tational cost of propagating uncertainty forward in time. The
dynamics of the system are given by an extended Kalman fil-
ter. The key observation is that the cost of uncertainty (the
state and model parameter given by
Trace(V,,2), the trace of the product of the second derivative
of the value function and the covariance matrix of the state.

covariances) s

Minimizing the additional cost due to uncertainty makes the
controller more robust and guides exploration.

Example Application

We implemented DDP on an actual robot as part of a learning
from demonstration experiment (Figure 3). Several robustness
issues arose since models are never perfect, especially learned
models. 1) We needed initial trajectories that were consistent
with the learned models, and sometimes reasonable or feasible
trajectories do not exist due to modeling error in the learned
model. 2) During optimization, the forward integration of a
learned model in time often blows up when the learned model
is inaccurate or when the plant is unstable and the current policy
fails to stabilize it. 3) The backward integration to produce a
value function and a corresponding policy uses derivatives of the
learned model, which are often quite inaccurate in the early
stages of learning, producing inaccurate value function estimates
and ineffective policies. 4) Dynamic planners amplify modeling
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error, because they take advantage of any modeling error that
reduces cost, and because some planners use derivatives, which
can be quite inaccurate. 5) The new knowledge gained in
attempting a task may not change the predictions the system
makes about the task (falling down might not tell us much about
the forces needed in walking). In the task shown in Figure 3, we
used a direct reinforcement learning approach that adjusted the
task goals in addition to optimal control to overcome modeling
errors that the learning system did not handle [44].

We use another form of one-link pendulum swing-up as
an example problem to provide the reader with a visualizable
example of a value function and policy (Figure 4). In this one-
link pendulum swing-up, a motor at the base of the pendulum
swings a rigid arm from the downward stable equilibrium to
the upright unstable equilibrium and balances the arm there.
‘What makes this challenging is that the one-step cost function
penalizes the amount of torque used and the deviation of
the current position from the goal. The controller must try
to minimize the total cost of the trajectory. The one-step
cost function for this example is a weighted sum of the
squared position errors (0: difference between current angle
and the goe}% angle) and the squared torques T:
Lx,u)=010T+ 2T, where 0.1 weights the position
error relative to the torque penalty and T is the time step of
the simulation (0.01s). Including the time step T'in the optimi-
zation criterion allows comparison with controllers with dif-
ferent time steps and continuous time controllers. There are
no costs associated with the joint velocity. Figure 4 shows the
optimal value function and policy. The optimal trajectory is
shown as a yellow line in the value function plot and as a black
line with a yellow border in the policy plot [Figure 4(b) and
(c)]. The value function is cut off above 20 so that we can see
the details of the part of the value function that determines the
optimal trajectory. The goal is at the state (0,0).

Model-Free Learning

There are several popular methods of approaching model-
free robot learning. Value function-based methods are dis-
cussed in the context of actor-critic methods, temporal dif-
ference (TD) learning, and Q-learning. A novel wave of
algorithms avoids value functions and focuses on directly
learning the policy, either with gradient methods or proba-
bilistic methods.

Value Function Approaches

Instead of using dynamic programming, the value function
I/(x) can be estimated with TD learning [7], [45]. Essentially,
TD enforces the validity of the Bellman equations for tempo-
rally adjacent states, which can be shown to lead to a spatially
consistent estimate of the value function for a given policy. To
improve the policy, TD needs to be coupled to a simultaneous
policy update using actor-critic methods [7].

Alternatively, instead of the value function I/(x), the action
value function Q(x,u) can be used, which is defined as
Q(x,u) = L(x0, uy) + ming, ., L(xi, uk) [7], [46]. Know-
ing Q(x,u) for all actions in a state allows choosing the one
with the maximal (or minimal for penalty costs) Q-value as
the optimal action. Q-learning can be conceived of as TD
learning in the joint space of states and actions.

TD and Q-learning work well for discrete state-action
spaces but become more problematic in continuous state-
action scenarios. In continuous spaces, function approximators
need to be used to represent the value function and policy.
Achieving reliable estimation of these functions usually
requires a large number of samples that densely fill the relevant
space for learning, which is hard to accomplish in actual
experiments with complex robot systems. There are also no
guarantees that, during learning, the robot will not be given
unsafe commands. Thus, many practical approaches learn first

Torque (N - m)

> O
GE)

s
2 & ©° .
o7 erocty

(b)

Velocity (r/s)

\
N, L w2
>0 %wpe O

(R

T 6-5-4-3-2-10 1 2 3

o .
\elocty Position (r)

() (d)

Figure 4. (a) Configurations from the simulated one link pendulum optimal trajectory every half second and at the end of the
trajectory. (b) Value function for one-link example. (c) Policy for one-link example. (d) Trajectory-based approach: random states
(dots) and trajectories (black lines) used to plan one-link swing-up, superimposed on a contour map of the value function [33].
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in simulations (which is essentially a model-based approach)
until reasonable performance is achieved, before continuing to
experiment on an actual robot to adjust the control policy to
the true physics of the world [47].

In the end, it is intractable to find a globally optimal control
policy in high dimensional robot systems, as global optimality
requires exploration of the entire state-action space. Thus,
local optimization such as trajectory optimization seems to be
more practical, using initialization of the policy from some
informed guess, for instance, imitation learning [44], [48]—
[51]. Fitted Q-iteration is an example of a model-free learning
algorithm that approximates the Q-function only along some
sampled trajectories [52], [53]. Recent developments have
given up on estimating the value function and rather focus
directly on learning the control policy from trajectory rollouts,
which is the topic of the following sections.

Policy Gradient Methods
Policy gradient methods usually assume that the cost of motor
skill can be written as

J(x0) = E {Z 7L, uo}, 4)
k=0

which is the expected sum of discounted rewards (y € [0,1])
over a (potentially infinite) time horizon N. The expecta-
tion E{} is taken over all trajectories T that start in state x.
The goal is to find the motor commands u,, that optimize
this cost function. Most approaches assume that there is a
start state X = X, and/or a start state distribution [54]. The
control policy is also often compactly parameterized, e.g.,
by means of a basis function representation u = 07 p(x),
where 0 are the policy parameters [see also (1)], and ¢(x) is a
vector of nonlinear basis functions provided by the user.
Mainly for the purpose of exploration, the policy can
be chosen to be stochastic, e.g., with a normal distribution
u ~ N0O"$(x), X), although cases exist where only a sto-
chastic policy is optimal [54].

The essence of policy gradient methods is to compute the
gradient 9J/00 and optimize (4) with gradient-based incremental
updates. As discussed in more detail in [55], a variety of algorithms
exist to compute the gradient. Finite difference gradients [56]
perform a perturbation analysis of the parameter vector 6 and
estimate the gradient from a first-order numerical Taylor series
expansion. The REINFORCE algorithm [57], [58] is a
straightforward derivative computation of the logarithm of
(4), assuming as the probability of a trajectory py(r) =
p(xO)H;?;]p(xk|xk,1, w,_1)po(ur_1|Xe—1), and emphasizing
that the parameters 6 only appear in the stochastic policy pg
such that many terms in the gradient computation drop out.
GPOMDP [59] and methods based on the policy gradient
theorem [54] are more efficient versions of REINFORCE
(for more details, see [55]). Peters and Schaal [60] suggested a
second-order gradient method derived from insights of [61]
and [62], which is currently among the fastest gradient-learn-
ing approaches. Reference [63] emphasized that the choice of
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injecting noise in the stochastic policy can strongly influence
the efficiency of the gradient updates.

Policy gradient methods can scale to high-dimensional
state-action spaces, at the cost of finding only locally optimal
control policies and have become rather popular in robotics
[64]-[66]. One drawback of policy gradients is that they
require manual tuning of gradient parameters, which can be
tedious. Probabilistic methods, as discussed in the next section,
try eliminating gradient computations.

Probabilistic Direct Policy Learning

Transforming reinforcement learning into a probabilistic estima-
tion approach is inspired by the hope of bringing to bear the
wealth of statistical learning techniques that were developed over
the last 20 years of machine-learning research. An early attempt
can be found in [67], where reinforcement learning was formu-
lated as an expectation—maximization (EM) algorithm [68]. The
important idea was to treat the reward L(x,u) as a pseudoprob-
ability, i.e., it has to be strictly positive, and the integral over the
state-action space of the reward has to result in a finite number.
Transforming traditional convex reward functions with the
exponential function is often used to achieve this property at the
cost that the learning problem gets slightly altered by this change
of cost function. Equation (4) can thus be thought of as a likeli-
hood, and the corresponding log likelihood becomes

N
logJ(x) = log/ po(t)R(7)dt, where R(t) = ZykL(xk,uk,).
k=0

T

®)

This log likelihood can be optimized with the EM algo-
rithm. In [15], such an approach was used to learn operational
space controllers, where the reinforcement learning compo-
nent enabled a consistent resolution of redundancy. In [69],
the previous approach was extended to learning from trajecto-
ries—see also contribution by Kober and Peters (pp. 55-62).
Extending [70] and [71] added a more thorough treatment of
learning in the infinite discounted horizon case, where the
algorithm can essentially determine the most suitable temporal
window for optimization.

Another way of transforming reinforcement learning into a
statistical estimation problem was suggested in [72] and [73].
Here, it was realized that optimization with the stochastic
Hamilton-Jacobi-Bellman equations can be transformed into a
path-integral estimation problem, which can be derived with
the Feynman-Kac theorem [31], [74]. While this formulation
is normally based on value functions and requires a model-
based approach, Theodorou et al. [31] realized that even
model-free methods can be obtained. The resulting reinforce-
ment learning algorithm resembles the one of [69], however,
without the requirement that reinforcement is a pseudoprob-
ability. Because of its grounding in first-order principles of
optimal control theory, its simplicity, and no open learning
parameters except for the exploration noise, this algorithm
might be one of the most straightforward methods of trajec-
tory-based reinforcement learning to date. It should also be
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mentioned that [75] developed a
reinforcement learning

framework with a special probabilistic

model-based

control cost for discrete state-action
spaces that, in its limit to continuous
state-action spaces, will result in a path-
integral formulation.

Example Application

Figure 5 illustrates our application of
path-integral reinforcement learning to
a robot-learning problem [31]. The
robot dog is to jump across a gap. The
jump should make as much forward
progress as possible, as it is a maneuver
in a legged locomotion competition,
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which scores the speed of the robot.
The robot has three degree of freedoms
(DoFs) per leg, and thus a total of 12
DoFs. Each DoF was represented as a
parameterized movement primitive [76] with 50 basis func-
tions. An initial seed behavior was taught by learning from
demonstration, which allowed the robot barely to reach the
other side of the gap without falling into the gap—the demon-
stration was generated from a manual adjustment of knot
points in a spline-based trajectory plan for each leg.
Path-integral reinforcement learning primarily used the
forward progress as a reward and slightly penalized the squared
acceleration of each DoF and the squared norm of the parame-
ter vector, i.e., a typical form of complexity regularization
[77]. Learning was performed on a physical simulator of the
robot dog, as the real robot dog was not available for this
experiment. Figure 5 illustrates that after about 30 trials, the
performance of the robot was significantly improved, such that
after the jump, almost the entire body was lying on the other
side of the gap. It should be noted that applying path-integral
reinforcement learning was algorithmically very simple, and
manual tuning only focused on generate a good cost function.

Imitation Learning, Policy Parameterizations, and
Inverse Reinforcement Learning

While space constraints will not allow us to go into more
detail, three interwoven topics in robot learning are worth
mentioning.

First, imitation learning has become a popular topic to initi-
alize and speed up robot learning. Reviews on this topic can
be found, for instance, in [48], [49], and [78].

Second, determining useful parameterizations for control
policies is a topic that is often discussed in conjunction with
imitation learning. Many different approaches have been sug-
gested in the literature, for instance, based on splines [79], hid-
den Markov models [80], nonlinear attractor systems [76], and
other methods. Billard et al. [78] provide a survey of this topic.

Finally, designing useful reward functions remains one of the
most time-consuming and frustrating topics in robot learning,.
Thus, extracting the reward function from observed behavior is
a topic of great importance for robot learning and imitation
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Figure 5. (a) Actual and simulated robot dog. (b) Learning curve of optimizing the
Jjump behavior with path-integral reinforcement learning.

learning under the assumption that the observed behavior is
optimal under a certain criterion. Inverse reinforcement learning
[81], apprenticeship learning [82], and maximum margin plan-
ning [83] are some of the prominent examples in the literature.

Conclusions

Recent trends in robot learning are to use trajectory-based
optimal control techniques and reinforcement learning to scale
complex robotic systems. On the one hand, increased compu-
tational power and multiprocessing, and on the other hand,
probabilistic reinforcement learning methods and function
approximation, have contributed to a steadily increasing inter-
est in robot learning. Imitation learning has helped signifi-
cantly to start learning with reasonable initial behavior.
However, many applications are still restricted to rather low-
dimensional domains and toy applications. Future work will
have to demonstrate the continual and autonomous learning
abilities, which were alluded to in the introduction.
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