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Logistic Models

Logistic Models model probability of an outcome Y given a
predictor x .

P(Y = y |x ;w) ∝ exp(w>φ(y , x))

Subsumes Multinomial Logistic Regression, Conditional Random
fields and Maximum entropy Models.
For example, in Multinomial Logistic Regression

P(Y = k|x ;w) =
exp(w>

k x)∑
j

exp(w>
j x)
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Focus of the Talk

Train Logistic models on large-scale data.

What is Large-scale ?

Large number of Training Examples

High dimensionality

Large number of Outcomes
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Motivation

Some commonly used data on the web,

Dataset #Instances #Labels #Features #Parameters

ODP subset 93,805 12,294 347,256 4,269,165,264

Wikipedia subset 2,365,436 325,056 1,617,899 525,907,777,344

Image-net 14,197,122 21,841 - -

How can we parallelize the training of such models ?

How can we optimize different subsets of parameters
simultaneously ?
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Maximum Likelihood Estimation (MLE)

Typical MLE estimation

N training examples, K classes.

xi denotes the i th training example.

Indicator variable yik denotes whether xi belongs to class k.

Estimate parameters w by maximizing the log-likelihood,

max
w

N∑
i=1

K∑
k=1

yik logP(yik |xi ;w)− λ

2
‖w‖2

[OPT1] min
w

λ

2
‖w‖2 −

N∑
i=1

K∑
k=1

yikw
>
k xi +

N∑
i=1

log

(
K∑

k=1

exp(w>
k xi )

)
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Parallelization

min
w

λ

2
‖w‖2 −

N∑
i=1

K∑
k=1

yikw
>
k xi +

N∑
i=1

log

(
K∑

k=1

exp(w>
k xi )

)

The log-sum-exp (LSE) function couples all the class-level
parameter wk ’s together.

Replace LSE by a parallelizable function

This parallelizable function should be an upper-bound
It should not make the optimization harder - like introduce
non-convexity, non-differentiability etc.
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Bound 1 - Piecewise Linear Bound (Hsiung et al)

Properties used

LSE is a convex-function

Convex function can be approximated to any precision by
piecewise linear functions.

max
j
{a>j γ + bj} ≤ log

(
K∑

k=1

exp(γk)

)
≤ max

j′
{c>j′ γ + dj′}

a, c ∈ RK b, d ∈ R

Upper Bound

LSE 

Lower Bound
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Bound 1 - Piecewise Linear Bound (Hsiung et al)

max
j
{a>j γ + bj} ≤ log

(
K∑

k=1

exp(γk)

)
≤ max

j′
{c>j′ γ + dj′}

a, c ∈ RK b, d ∈ R

Advantages

The bound can be made arbitrarily accurate by increasing the
number of pieces.

Disadvantages

Max-function makes the objective non-differentiable.

The number of variational parameters grows with the
approximation level.

Optimizing the variational parameter is hard.
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Bound 2 - Double Majorization (Bouchard 2007)

The LSE is bound by,

log

(
K∑

k=1

exp(w>
k xi )

)
≤ ai +

K∑
k=1

log(1 + exp(w>
k xi − ai )) , ai ∈ R

Advantages

The bound is parallelizable.

It is an upper bound.

It is differentiable and convex.
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Bound 2 - Double Majorization (Bouchard 2007)

Disadvantage

The bound is not tight enough.
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Bound 3 - Log Concavity

A relatively famous bound using the concavity of the log-function

log(x) ≤ ax − log(a)− 1 ∀ x , a > 0
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Bound 3 - Log Concavity

Applying to the LSE function,

log

(
K∑

k=1

exp(w>
k xi )

)
≤ ai

K∑
k=1

exp(w>
k xi )− log(ai )− 1

Advantages

The bound is parallelizable.

It is differentiable.

Optimizing the variational parameter ai is easy.

The upper bound is exact at ai = 1
K∑

k=1
exp(w>

k xi )

.

Disadvantage

The combined objective is non-convex.
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Reaching Optimality

MLE estimation min
w

λ

2
‖w‖2 −

N∑
i=1

K∑
k=1

yikw
>
k xi +

N∑
i=1

log

(
K∑

k=1

exp(w>
k xi )

)

Log-concavity Bound log

(
K∑

k=1

exp(w>
k xi )

)
≤ ai

K∑
k=1

exp(w>
k xi )− log(ai )− 1

Combined Objective

F (W ,A) =
λ

2

K∑
k=1

‖wk‖2 +
N∑
i=1

[
−

K∑
k=1

yikw
>
k xi + ai

K∑
k=1

exp(w>
k xi )− log(ai )− 1

]

Despite the non-convexity, we can show that

The combined objective has a unique minima.

This minimum coincides with the optimal MLE solution.
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Reaching Optimality

An iterative and parallel block coordinate descent algorithm to
converge to the unique minimum.

Algorithm 1 A parallel block coordinate descent

Initialize : t ← 0,A0 ← 1
K ,W

0 ← 0.

While : Not converged
In parallel : Wt+1 ← arg minW F (W ,At)
At+1 ← arg minA F (Wt+1,A)
t ← t + 1
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Experimental Comparison

Datasets

Dataset # instances #Leaf-labels #Features #Parameters Parameter

Size (approx)

CLEF 10,000 63 80 5,040 40KB

NEWS20 11,260 20 53,975 1,079,500 4MB

LSHTC-small 4,463 1,139 51,033 227,760,279 911MB

LSHTC-large 93,805 12,294 347,256 4,269,165,264 17GB

Optimization Methods

Double Majorization Bound (DM)

Log concavity Bound (LC)

Limited Memory BFGS (LBFGS) - the most widely used method.

Alternating Direction Method of Multipliers (ADMM)
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Time Complexity
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Figure : The difference from the true optimum vs time
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Conclusion

Discussed multiple ways to perform distributed training of
large-scale Logistic Models.

The LC method seem to offer the best trade-off between
accuracy and time.

Several open questions,

Effect of the regularization parameter λ.
Effect of the correlation between the parameters.
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