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Maximum Likelihood Estimation
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Experiments
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Logistic Models

Logistic Models model probability of an outcome Y given a
predictor x.

P(Y = y|x;w) o exp(w ' ¢(y, x))

Subsumes Multinomial Logistic Regression, Conditional Random
fields and Maximum entropy Models.
For example, in Multinomial Logistic Regression

exp(w, x)

P(Y = k|x;w) = 72 exp(w x)
. i
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Focus of the Talk

Train Logistic models on large-scale data.

What is Large-scale ?
@ Large number of Training Examples
@ High dimensionality

@ Large number of Outcomes
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Some commonly used data on the web,

Dataset #lInstances  #Llabels  #Features #Parameters
ODP subset 93,805 12,294 347,256 4,269,165,264
Wikipedia subset 2,365,436 325,056 1,617,899  525,907,777,344
Image-net 14,197,122 21,841 - -
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Some commonly used data on the web,

Dataset #lInstances  #Llabels  #Features #Parameters
ODP subset 93,805 12,294 347,256 4,269,165,264
Wikipedia subset 2,365,436 325,056 1,617,899  525,907,777,344
Image-net 14,197,122 21,841 - -

e How can we parallelize the training of such models ?

e How can we optimize different subsets of parameters
simultaneously ?
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Maximum Likelihood Estimation (MLE)

Typical MLE estimation
@ N training examples, K classes.
@ x; denotes the i*" training example.
@ Indicator variable y; denotes whether x; belongs to class k.

o Estimate parameters w by maximizing the log-likelihood,

N K
A
max E 1 kE 1)’ik log P(yix|xi; w) — EIIWH2
= =
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Maximum Likelihood Estimation (MLE)

Typical MLE estimation
@ N training examples, K classes.
@ x; denotes the i*" training example.
@ Indicator variable y; denotes whether x; belongs to class k.

o Estimate parameters w by maximizing the log-likelihood,

N K
A
max ZZ}’ik log P(yik|xi; w) — §||WH2

i=1 k=1

[OPT1] mvjn —Hw||2 ZZy,ka xi + Z log (Z exp(w, x; )

i=1 k=1
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Parallelization

min §|rw||2—zzy,kwkx,+zlog Zexp w x)

i=1 k=1
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Parallelization

m|n —Hw||2 ZZy,ka x; + Z log Zexp wy ;)

i=1 k=1

@ The log-sum-exp (LSE) function couples all the class-level
parameter wy's together.
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Parallelization

m|n —Hw||2 ZZy,ka x; + Zlog (Z exp(w, X; )

i=1 k=1

@ The log-sum-exp (LSE) function couples all the class-level
parameter wy's together.
@ Replace LSE by a parallelizable function

e This parallelizable function should be an upper-bound
e It should not make the optimization harder - like introduce
non-convexity, non-differentiability etc.
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Bound 1 - Piecewise Linear Bound (Hsiung et al)

Properties used
@ LSE is a convex-function

@ Convex function can be approximated to any precision by
piecewise linear functions.

K

max{a/ v+ b} < log <Z exp(k) | < max{cyy+dy}
J K1 J

a,ceRf bdeRr

> Upper Bound
—~ LSE

> Lower Bound
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Bound 1 - Piecewise Linear Bound (Hsiung et al)

K
max{a] 7 + bj} < log <Z exp(w)) < max{c; v+ dy}
J

k=1

a,ceRK b,deR

Advantages
@ The bound can be made arbitrarily accurate by increasing the
number of pieces.
Disadvantages
@ Max-function makes the objective non-differentiable.
@ The number of variational parameters grows with the
approximation level.
@ Optimizing the variational parameter is hard.
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Bound 2 - Double Majorization (Bouchard 2007)

The LSE is bound by,

K K
log (Z eXp(WkTXi)> <aj+ ) log(l+exp(w xi—a)) , s €R
k=1 k=1
Advantages
@ The bound is parallelizable.
@ It is an upper bound.

o It is differentiable and convex.
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Bound 2 - Double Majorization (Bouchard 2007)

Disadvantage

@ The bound is not tight enough.

Efficiency of Bound
3.0E+04

2.5E+04
— Log-sum-exp

2.0E+04 — Upper-bound

1.5E404

Function-value

1.0E+04

5.0E+03

0.0E+00
15 9 131721252933 37 41454953 57 6165 69 73 77 81 85 89

Iteration

The gap between true objective and upper-bounded objective on
the 20-newsgroup dataset.
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Bound 3 - Log Concavity

A relatively famous bound using the concavity of the log-function

log(x) < ax —log(a) —1 V x,a>0

Log Concavity Bound

3
o -1
°
log(x)
3 — —a=.3
a=2
B - —a=.02
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Bound 3 - Log Concavity

Applying to the LSE function,

K K
log (Z exp(wy] x,->) <2 ) exp(wy ;) — log(ai) — 1
k=1 k=1
Advantages
@ The bound is parallelizable.
o It is differentiable.

@ Optimizing the variational parameter a; is easy.
1

@ The upper bound is exact at a; = .
> exp(w, x;)
k=1

Disadvantage

@ The combined objective is non-convex.
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Reaching Optimality

K
. . .
MLE estimation min §||w|| ZZy,ka Xi + Z log <Z exp( Wk Xi) >

i=1 k=1
K

K
Log-concavity Bound log <Z exp(w,jx,—)) < a Zexp(w,jx,—) —log(ai) — 1
k=1 k=
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Reaching Optimality

K
MLE estimation m|n f||w|| — ZZy,ka Xi + Z log <Z exp( Wk Xi) >

i=1 k=1

K

K
Log-concavity Bound log <Z exp(w,jx,—)) < a Zexp(w,jx,—) —log(ai) — 1
k=1 k=

Combined Objective

A K N
=33 Il +Y
k=1 i=1

K K
S i+ S exp(un ) — log(a) — 1}
k=1 k=1
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Reaching Optimality

N K N K
A
MLE estimation min §||w||2 — Z Zy,-kw,;rx,- + Z log <Z exp(w,jx,—))
" i=1 k=1 i=1 k=1
K K
Log-concavity Bound log <Z exp(w,jx,—)) < a Zexp(w,jx,—) —log(ai) — 1
k=1 k=

Combined Objective

A K N
EEPITEDD
k=1 i=1

Despite the non-convexity, we can show that

K K
S i+ S exp(un ) — log(a) — 1}
k=1 k=1

@ The combined objective has a unique minima.

@ This minimum coincides with the optimal MLE solution.
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Reaching Optimality

An iterative and parallel block coordinate descent algorithm to
converge to the unique minimum.

Algorithm 1 A parallel block coordinate descent
Initialize : t « 0,A° + L W° « 0.

While : Not converged
In parallel : W' « argminy, F(W, AY)
AT < argming F(WETL A)
t+t+1
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Experimental Comparison

Datasets
Dataset # instances  #Leaf-labels #Features #Parameters Parameter
Size (approx)
CLEF 10,000 63 80 5,040 40KB
NEWS20 11,260 20 53,975 1,079,500 4MB
LSHTC-small 4,463 1,139 51,033 227,760,279 911MB
LSHTC-large 93,805 12,294 347,256 4,269,165,264 17GB

Optimization Methods
@ Double Majorization Bound (DM)
@ Log concavity Bound (LC)
@ Limited Memory BFGS (LBFGS) - the most widely used method.
@ Alternating Direction Method of Multipliers (ADMM)
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Time Complexity

NEWS-20 Dataset CLEF Dataset
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Figure : The difference from the true optimum vs time

Models
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Conclusion

@ Discussed multiple ways to perform distributed training of
large-scale Logistic Models.

@ The LC method seem to offer the best trade-off between
accuracy and time.

@ Several open questions,

o Effect of the regularization parameter .
o Effect of the correlation between the parameters.
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Binary vs Multiclass
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Lambda (Regularization parameter)
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