Distributed Training for Large-scale Logistic Models

Siddharth Gopal

Carnegie Mellon Univeristy

21 Aug 2013

¹Joint work with Yiming Yang presented at ICML' $13 \rightarrow 43 \rightarrow 42 \rightarrow 42 \rightarrow 22 \rightarrow 9$

- Logistic Models
- Maximum Likelihood Estimation
- Parallelization
- Experiments

글 🕨 🖌 글

э

Logistic Models model probability of an outcome Y given a predictor x.

$$P(Y = y | x; \mathbf{w}) \propto \exp(\mathbf{w}^{\top} \phi(y, x))$$

Subsumes Multinomial Logistic Regression, Conditional Random fields and Maximum entropy Models.

For example, in Multinomial Logistic Regression

$$P(Y = k | x; \mathbf{w}) = \frac{\exp(w_k^\top x)}{\sum\limits_j \exp(w_j^\top x)}$$

Train Logistic models on large-scale data.

What is Large-scale ?

- Large number of Training Examples
- High dimensionality
- Large number of Outcomes

Train Logistic models on large-scale data.

What is Large-scale ?

- Large number of Training Examples
- High dimensionality
- Large number of Outcomes

Some commonly used data on the web,

Dataset	#Instances	#Labels	#Features	#Parameters
ODP subset	93,805	12,294	347,256	4,269,165,264
Wikipedia subset	2,365,436	325,056	1,617,899	525,907,777,344
Image-net	14,197,122	21,841	-	-

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Some commonly used data on the web,

Dataset	#Instances	#Labels	#Features	#Parameters
ODP subset	93,805	12,294	347,256	4,269,165,264
Wikipedia subset	2,365,436	325,056	1,617,899	525,907,777,344
Image-net	14,197,122	21,841	-	-

- How can we parallelize the training of such models ?
- How can we optimize different subsets of parameters simultaneously ?

Maximum Likelihood Estimation (MLE)

Typical MLE estimation

- N training examples, K classes.
- x_i denotes the i^{th} training example.
- Indicator variable y_{ik} denotes whether x_i belongs to class k.
- Estimate parameters w by maximizing the log-likelihood,

$$\max_{\mathbf{w}} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log P(y_{ik}|x_i; \mathbf{w}) - \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Typical MLE estimation

[

- N training examples, K classes.
- x_i denotes the i^{th} training example.
- Indicator variable y_{ik} denotes whether x_i belongs to class k.
- Estimate parameters w by maximizing the log-likelihood,

$$\max_{\mathbf{w}} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log P(y_{ik}|x_i; \mathbf{w}) - \frac{\lambda}{2} \|\mathbf{w}\|^2$$

DPT1]
$$\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} w_k^\top x_i + \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \exp(w_k^\top x_i) \right)$$

Parallelization

$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{k=1}^K y_{ik} w_k^\top x_i + \sum_{i=1}^N \log\left(\sum_{k=1}^K \exp(w_k^\top x_i)\right)$$

æ

< E ► < E

$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{k=1}^K y_{ik} w_k^\top x_i + \sum_{i=1}^N \log\left(\sum_{k=1}^K \exp(w_k^\top x_i)\right)$$

• The log-sum-exp (LSE) function couples all the class-level parameter *w_k*'s together.

医下子 医

$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{k=1}^K y_{ik} w_k^\top x_i + \sum_{i=1}^N \log\left(\sum_{k=1}^K \exp(w_k^\top x_i)\right)$$

- The log-sum-exp (LSE) function couples all the class-level parameter *w_k*'s together.
- Replace LSE by a parallelizable function
 - This parallelizable function should be an upper-bound
 - It should not make the optimization harder like introduce non-convexity, non-differentiability etc.

4 B K 4 B K

Bound 1 - Piecewise Linear Bound (Hsiung et al)

Properties used

- LSE is a convex-function
- Convex function can be approximated to any precision by piecewise linear functions.

Bound 1 - Piecewise Linear Bound (Hsiung et al)

$$\max_{j} \{a_{j}^{\top} \gamma + b_{j}\} \leq \log \left(\sum_{k=1}^{K} \exp(\gamma_{k})\right) \leq \max_{j'} \{c_{j'}^{\top} \gamma + d_{j'}\}$$
$$a, c \in \mathcal{R}^{K} \quad b, d \in \mathcal{R}$$

Advantages

• The bound can be made arbitrarily accurate by increasing the number of pieces.

Disadvantages

- Max-function makes the objective non-differentiable.
- The number of variational parameters grows with the approximation level.
- Optimizing the variational parameter is hard.

The LSE is bound by,

$$\log\left(\sum_{k=1}^{K} \exp(w_k^\top x_i)\right) \leq a_i + \sum_{k=1}^{K} \log(1 + \exp(w_k^\top x_i - a_i)) \hspace{0.1 in}, \hspace{0.1 in} a_i \in \mathcal{R}$$

Advantages

- The bound is parallelizable.
- It is an upper bound.
- It is differentiable and convex.

Bound 2 - Double Majorization (Bouchard 2007)

Disadvantage

• The bound is not tight enough.

The gap between true objective and upper-bounded objective on the 20-newsgroup dataset.

A relatively famous bound using the concavity of the log-function

$$\log(x) \leq ax - \log(a) - 1 \quad \forall \ x, a > 0$$

Applying to the LSE function,

$$\log\left(\sum_{k=1}^{K} \exp(w_k^\top x_i)\right) \leq a_i \sum_{k=1}^{K} \exp(w_k^\top x_i) - \log(a_i) - 1$$

Advantages

- The bound is parallelizable.
- It is differentiable.
- Optimizing the variational parameter *a_i* is easy.

• The upper bound is exact at
$$a_i = \frac{1}{\sum\limits_{k=1}^{K} \exp(w_k^\top x_i)}$$
.

Disadvantage

• The combined objective is non-convex.

Reaching Optimality

MLE estimation
$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{k=1}^K y_{ik} w_k^\top x_i + \sum_{i=1}^N \log\left(\sum_{k=1}^K \exp(w_k^\top x_i)\right)$$

$$\textbf{Log-concavity Bound} \ \log\left(\sum_{k=1}^{K} \exp(w_k^\top x_i)\right) \leq a_i \sum_{k=1}^{K} \exp(w_k^\top x_i) - \log(a_i) - 1$$

æ

Reaching Optimality

MLE estimation
$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{k=1}^K y_{ik} w_k^\top x_i + \sum_{i=1}^N \log\left(\sum_{k=1}^K \exp(w_k^\top x_i)\right)$$

Log-concavity Bound
$$\log\left(\sum_{k=1}^{K} \exp(w_k^{\top} x_i)\right) \leq a_i \sum_{k=1}^{K} \exp(w_k^{\top} x_i) - \log(a_i) - 1$$

Combined Objective

$$F(W, A) = \frac{\lambda}{2} \sum_{k=1}^{K} \|w_k\|^2 + \sum_{i=1}^{N} \left[-\sum_{k=1}^{K} y_{ik} w_k^\top x_i + a_i \sum_{k=1}^{K} \exp(w_k^\top x_i) - \log(a_i) - 1 \right]$$

э

Image: Image:

Reaching Optimality

$$\mathsf{MLE \ estimation \ min}_{\mathbf{w}} \ \frac{\lambda}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{k=1}^K y_{ik} w_k^\top x_i + \sum_{i=1}^N \log\left(\sum_{k=1}^K \exp(w_k^\top x_i)\right)$$

$$\textbf{Log-concavity Bound} \ \log\left(\sum_{k=1}^{K} \exp(w_k^\top x_i)\right) \leq a_i \sum_{k=1}^{K} \exp(w_k^\top x_i) - \log(a_i) - 1$$

Combined Objective

$$F(W, A) = \frac{\lambda}{2} \sum_{k=1}^{K} \|w_k\|^2 + \sum_{i=1}^{N} \left[-\sum_{k=1}^{K} y_{ik} w_k^\top x_i + a_i \sum_{k=1}^{K} \exp(w_k^\top x_i) - \log(a_i) - 1 \right]$$

Despite the non-convexity, we can show that

- The combined objective has a unique minima.
- This minimum coincides with the optimal MLE solution.

4 B 6 4 B

An iterative and **parallel** block coordinate descent algorithm to converge to the unique minimum.

Algorithm 1 A parallel block coordinate descent

Initialize : $t \leftarrow 0, \mathbf{A}^0 \leftarrow \frac{1}{K}, \mathbf{W}^0 \leftarrow 0.$

While : Not converged
In parallel :
$$\mathbf{W}^{t+1} \leftarrow \arg\min_{W} F(W, \mathbf{A}^{t})$$

 $\mathbf{A}^{t+1} \leftarrow \arg\min_{A} F(\mathbf{W}^{t+1}, A)$
 $t \leftarrow t+1$

高 と く ヨ と く ヨ と

Datasets

Dataset	# instances	#Leaf-labels	#Features	#Parameters	Parameter
					Size (approx)
CLEF	10,000	63	80	5,040	40KB
NEWS20	11,260	20	53,975	1,079,500	4MB
LSHTC-small	4,463	1,139	51,033	227,760,279	911MB
LSHTC-large	93,805	12,294	347,256	4,269,165,264	17GB

Optimization Methods

- Double Majorization Bound (DM)
- Log concavity Bound (LC)
- Limited Memory BFGS (LBFGS) the most widely used method.
- Alternating Direction Method of Multipliers (ADMM)

4 B K 4 B K

Time Complexity

Figure : The difference from the true optimum vs time

- 4 同 6 4 日 6 4 日 6

- Discussed multiple ways to perform distributed training of large-scale Logistic Models.
- The LC method seem to offer the best trade-off between accuracy and time.
- Several open questions,
 - Effect of the regularization parameter λ .
 - Effect of the correlation between the parameters.

Binary vs Multiclass

