Shafeeq Sinnamohideen

OBJECTIVE

EDUCATION

HONORS AND
AWARDS

PROFESSIONAL
EXPERIENCE

TEACHING
EXPERIENCE

SPECIAL SKILLS

4221 Winterburn Ave. Apt B-301
Pittsburgh, PA 15207

412-443-0577

shafeeq@cs.cmu.edu
http://www.cs.cmu.edu/~shafeeq

Carnegie Mellon University
CIC 2221G

5000 Forbes Ave.
Pittsburgh, PA 15213
412-268-5911

To obtain a challenging research or development position in which I can advance the state of the art

in the area of large-scale distributed storage systems.

Ph.D., Computer Science, May 2010 (expected)
Carnegie Mellon University, Pittsburgh, PA
Advisor: Professor Gregory R. Ganger

B.S., Electrical & Computer Engineering, May 2000
Carnegie Mellon University, Pittsburgh, PA

FAST 2005 best paper award
e Paper title: Ursa Minor: versatile cluster-based storage

Graduate Student
Carnegie Mellon University

Intern
Intel Research Pittsburgh

Intern
Intel Research Pittsburgh

Researcher Programmer
Carnegie Mellon University, Coda Project

Student Researcher Programmer
Carnegie Mellon University, Coda Project

Teaching Assistant
CS 15-441, Computer Networks

Teaching Assistant
CS 15-462, Computer Graphics I

e Fxperience in FreeBSD and Linux kernel programming.

e Experience in developing complex distributed file systems.

August 2002 — Present

May 2003 — August 2003

April 2002 — August 2002

January 2000 — April 2002

May 1998 — December 1999

Fall 2004

Fall 2003

e Proficient in C, Ct+, Java, HTML, ML, Perl, and Verilog languges.

CV OF SHAFEEQ SINNAMOHIDEEN - PAGE 1 OF 4



RESEARCH
SUMMARY

SEP. 2004
PRESENT

JAN 2007
PRESENT

JAN 2004
PRESENT

Research interests: storage systems, distributed systems, operating systems, metadata scalability,
multi-server operations

Eliminating cross-server operations in scalable storage systems

Transparent scalability is a goal of many distributed storage systems. That is, it should be possible
to increase both capacity and throughput by adding servers and spreading data and work among
them, without client applications and users being aware of which servers are hosting which data.
This allows the system to balance load by using an internal mechanism to migrate objects from one
server to another as it sees fit.

Providing transparent scalability, however, is complicated by the fact that some operations involve
more than one object (e.g.: rename) and the defined semantics require that all be modified atomically.
If any directory may be on any server, it is possible that both directories are on different servers.
In order to provide atomicity in this case, a distributed transaction protocol, such as a two-phase
commit, would be required. While well understood, these protocols are complex to implement and
complex to verify. Furthermore, from examining file system traces, it is apparent that these cross-
server operations occur very rarely. Thus the work the system implementer has to do a lot of work to
provide a feature that is necessary, but infrequently used. Many systems choose instead to provide
a user-visible boundary, such as a volume in AFS or a mountpoint in NFS, across which atomic
operations are not supported.

I propose a solution to make system implementer’s task easier. If an operation involves objects on
more than one server, the mechanism used to move objects for load balancing can be reused to move
objects so that all the objects involved in the operation are on one server. That operation can now
be executed using the single-server code path. Once it is complete, the objects can be migrated back
to their original locations, or they can be left in place until they cause a load imbalance. Depending
on the granularity and speed of object migration, it may be slower than a distributed protocol, but
it is much simpler. If increased performance is necessary, the migration mechanism could potentially
be optimized for this usage.

I have implemented this technique in the Metadata Service of the Parallel Data Lab’s Ursa Minor
storage system, where it works quite well — even with the overhead of migrating metadata at a
“volume” granularity, scalability is linear for the mix of operations seen in well-known NFS traces
and benchmarks. My thesis explores the applicability of this technique to a wider range of workloads
and system architectures than those of Ursa Minor.

Zzyzx: Scalable Fault Tolerance through Byzantine Locking

Much of the complexity in Byzantine fault-tolerant replicated state-machine (RSM) protocols is due
to the need to handle concurrent client accesses to the same data. In common file system workloads,
however, concurrency is rare. Using a similar concept to my thesis work, Zzyzx is a new RSM protocol
that adds a fast path on top of an existing, but slow, protocol. When there is no concurrency, Zzyzx
can used its fast protocol, and when there is concurrency, it falls back to the underlying, slower,
protocol. Doing so provides a significant performance and scalability improvement over prior RSM
protocols, while providing the same fault-tolerance properties.

Self-* Storage: automating storage management

Reducing the human effort required to administer large storage systems is a major concern for future
IT infrastructures. To this end, we are exploring ways to create self-configuring, self-organizing, self-
tuning, self-healing, and self-managing systems made up of storage bricks. My area of interest is the
metadata service that maintains the mapping of file name or object identifier to storage bricks and
locations. The metadata service in the Parallel Data Lab’s Self-* prototype, which I am responsible
for, is a complex distributed system in its own right, and is the platform for my current research.

CV OF SHAFEEQ SINNAMOHIDEEN - PAGE 2 OF 4



JUN. 2005
SEP. 2006

MAay 2003
Dec. 2003

JAN. 2003
MAy 2003

SEP. 2001
Dec. 2002

Improving small file performance in object-based storage

Current object-based storage systems, while offering excellent scalability and performance for large-
file workloads, such as HPC applications, do not perform well for small-file workloads. This is largely
due to the extra overhead of first contacting a metadata server to determine which OSD to contact,
and then contacting the storage brick for a small access. As most workstation workloads, such as
home directories, compilation, and email, are small file workloads, this is an impediment to using a
single shared storage system for both tasks.

In this work, we explored two techniques that greatly reduced the need to interact with the metadata
server. The first is server-driven metadata prefetching, in which the server returns the metadata for
several related objects in addition to the metadata requested. For instance, if the server knows an
object is a directory, it could return the metadata for all files within the directory, on the grounds
that a client is likely to open one of them. Client-driven prefetching would be difficult in this case,
because the client doesn’t know which files are in the directory until it has read the directory itself.
My co-authors explored a complementary technique to make determining related objects easier.
When the system assigns an object ID to a file, the object ID can be chosen so that files in the same
directory receive object IDs numerically close to each other. Similarly, files in nearby directories
receive OIDs that slightly further away. This encoding of the filesystem hierarchy into the object ID
allows the OSD to store related objects near each other, preserving spatial locality. Similarly, the
metadata server can find related objects by simply looking at numerical distance.

Data Storage for Perishable Clients

The risk of lost writeback in distributed file systems using write-back caching has traditionally been
accepted. For mobile or public clients with slow long-distance networks, for example, users in a
wireless equipped cafe, however, the new data buffered at the client may represent several hours or
days of user effort, instead of the usual few seconds or minutes. Furthermore, the client machines
themselves are at risk of theft, damage, or operator intervention in the case of public machines.
This research focused on methods of quantifying the risk of data loss and identifying policies and
mechanisms for efficiently reducing this risk while not wasting resources. Methods included spreading
data onto nearby surrogate machines and trickling data from them to the distant servers, as well as
tuning the operation trickle-back policy to minimize risk instead of minimizing data transferred.

Remote Lookaside Caching for Internet Suspend-Resume

This extension of Data Staging bridged three projects at Intel Research Pittsburgh : Internet
Suspend-Resume, a virtual-machine migration system that uses the Coda distributed file system
for data storage, CASLIB, a library allowing applications to access data or content-addressable stor-
age devices, and lookaside caching, an extension to Coda that allows the client cache manager to
fetch the data for a file from alternate sources. Basically, the file server provides a cryptographic
hash of the file data, and if the client can locate a file with a matching hash from a faster source than
the server, the client can use that source instead. This would be of great benefit for a mobile client
connected to it’s file server through a slow network path. I extended the lookaside caching system
to use CASLIB to locate alternate sources for file data, providing an initial application for CASLIB.
Because CASLIB provides a uniform interface for a variety of storage devices : object stores, local
file systems, and DHTs, this composition increases the probability of finding alternate data sources.

Data Staging on Untrusted Surrogates

Despite network bandwidth improvements, mobile clients connected to distant file servers still ex-
perience slow file transfers and application unresponsiveness due to the latency of long-distance
networks. Prefetching data into the client’s cache is a known solution to this problem, but is not
sufficient in the case of, for example, a handheld client with a small amount of local storage, or
where aggressive prefetching would reduce battery life.

We explored a solution that speculatively stages data from the file server to a local, untrusted,

CV OF SHAFEEQ SINNAMOHIDEEN - PAGE 3 OF 4



REFEREED
PUBLICATIONS

INVITED PAPERS

TECHNICAL
REPORTS

surrogate server. The client can then service cache misses from the surrogate at local network
speeds, providing significant performance improvements. Security and integrity are preserved by
encrypting all data stored on the surrogate, and exchanging decryption keys and secure hashes over
a low-bandwidth secure channel between the server and client.

A transparently scalable metadata service for the Ursa Minor storage system. Shafeeq
Sinnamohideen, Raja R. Sambasivan, Likun Liu, James Hendricks, Gregory R. Ganger. To appear
in the proceedings of the 2010 USENIX Annual Technical Conference. June 2010. Boston, MA,
USA.

Scalable Fault Tolerance through Byzantine Locking. James Hendricks, Shafeeq Sinnamo-
hideen, Gregory R. Ganger, Michael K. Reiter. To appear in the proceedings of the 2010 Inter-
national Conference on Dependable Systems and Networks (DSN 2010). June 2010. Chicago, IL,
USA.

Ursa Minor: versatile cluster-based storage. Michael Abd-El-Malek, William V. Courtright
II, Chuck Cranor, Gregory R. Ganger, James Hendricks, Andrew J. Klosterman, Michael Mesnier,
Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen, John D. Strunk,
Eno Thereska, Matthew Wachs, Jay J. Wylie. In the proceedings of the 4" USENIX conference on
File and Storage Technologies (FAST’05). December 2005. San Francisco, CA, USA.

Data Staging on Untrusted Surrogates. Jason Flinn, Shafeeq Sinnamohideen, Niraj Tolia, M.
Satyanarayanan. In the proceedings of the 2" USENIX conference on File and Storage Technologies
(FAST’03). March 2003, San Francisco, CA, USA.

The Case for Cyber Foraging. Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamo-
hideen, Hen-I Yang. In the proceedings of the 10t ACM SIGOPS European Workshop. September
2002. Saint-Emilion, France.

Write-Back Caching for Coda. Shafeeq Sinnamohideen, Lawrence Greenfield. In the proceedings
of the 2" CMU Student Symposium on Computer Systems. October 1999, Pittsburgh.

Early experiences on the journey towards self-* storage. Michael Abd-El-Malek, William V.
Courtright 11, Chuck Cranor, Gregory R. Ganger, James Hendricks, Andrew J. Klosterman, Michael
Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen, John D.
Strunk, Eno Thereska, Matthew Wachs, Jay J. Wylie. In the Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering. September 2006.

Seamless Mobile Computing on Fixed Infrastructure Michael Kozuch, Mahadev Satya-
narayanan, Thomas Bressoud, Casey Helfrich, Shafeeq Sinnamohideen. In IEEE Computer. July
2004.

A transparently scalable metadata service for the Ursa Minor storage system. Shafeeq
Sinnamohideen, Raja R. Sambasivan, Likun Liu, James Hendricks, Gregory R. Ganger. Carnegie
Mellon University Parallel Data Lab Technical Report CMU-PDL-10-102. March 2010.

Eliminating cross-server operations in scalable file systems. James Hendricks, Shafeeq
Sinnamohideen, Raja R. Sambasivan, Gregory R. Ganger. Carnegie Mellon University Parallel
Data Lab Technical Report CMU-PDL-06-105. May 2006.

Improving small file performance in object-based storage. James Hendricks, Raja R. Sam-

basivan, Shafeeq Sinnamohideen, Gregory R. Ganger. Carnegie Mellon University Parallel Data Lab
Technical Report CMU-PDL-06-104. May 2006.

CV OF SHAFEEQ SINNAMOHIDEEN - PAGE 4 OF 4



REFERENCES

Dr. Gregory R. Ganger
Professor of ECE & CS
Director, Parallel Data Lab
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
ganger@ece.cmu.edu

Dr. Charles Cranor

Research Faculty

Systems Scientist, Parallel Data Lab
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213
chuck@ece.cmu.edu

CV OF SHAFEEQ SINNAMOHIDEEN - PAGE 5 OF 4



