
 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 1 -

Software Support Memory Forwarding
Rong Yan, Minglong Shao
Computer Science Department

Carnegie Mellon University

{shaoml, yanrong}@cs.cmu.edu

Abstract:
Memory forwarding is an effective way to dynamically optimize the data layout. It provides a safe

way to improve the performance of cache by actively creating better data locality. The existing
memory forwarding mechanism needs additional hardware support to perform the address

redirection, which greatly limits its real application. To put the memory forwarding technique into

widely practice, we propose a new way of software -based implementation. Based on the fact that
good data layout can bring much improvement of cache performance and actual forwarding is a

rare event during the execution, our experiment shows that reasonable speedup that can be

achieved by using this software-based memory forwarding technique .

1 Introduction

1.1 Overview
With the growing gap between the speed of memory and processor, the memory latency will

be more likely to dominate the execution time in most of our modern processors, especially when
running some memory access intense applications, such as database transactions, and multimedia
applications. While cache appears to be a reasonable solution toward addressing these problems, it

still has many limitations, especially in those applications with irregular memory access pattern

where the high cache miss rate invalidates the gains of cache-memory hierarchy. While the
technique of prefetching can hide the cache miss, it works well only in the cases when the data

addresses are predictable and memory bandwidth is sufficient.
In order to reduce the cache misses and facilitate other cache performance-improvement

mechanisms as well, one possible way is arranging data layout regularly. There are two possible

ways to manipulate the data layout: static placement and dynamic arrangement (also called data

relocation). Data relocation is more preferable because it can adapt to the program behavior. [1]
gives three steps of general relocation-based data layout optimization: guaranteeing correctness,
estimating the cost/benefit tradeoff, and generating relocation code.

Targeting ameliorating the spatial property of irregular data layout at run time, memory

forwarding technique [1] can safely rearrange the irregular memory blocks to a contiguous
memory space at runtime. The basic idea behind this is that when relocating an object to a new

address, we store the new address in the old address and mark the old location as a forwarding
address. The key point here is that some hardware or software mechanisms must be applied to
recognize the forwarding addresses and automatically forward the reference to the new addresses,

thereby guarantee the correct result. Noting the fact that non -relocated addresses are far more

common cases in the memory accesses and references to the old addresses are updated to new
locations, the forwarding action is a rare event during the execution, thereby the overhead of data

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 2 -

layout manipulation is likely to be amortized by the improvement of cache performance.

In effect, memory -forwarding mechanism efficiently builds up a memory indirection level to

increase spatial locality, and provide safety-protection mechanism to keep correctness of original
memory access behavior.

1.2 Related Works
The idea of memory forwarding is closed related to those studies occurred in the context of

architectures that directly supported the Lisp programming environment [2, 3]. But there are some
essential differences between the two techniques with respect to the motivation, objective,

implementation method, and application. The detailed comparison between the two can be found
in the [1].

The implementation of memory forwarding mentioned in [1] is built on the extension of

memory structure plus some software support. It assumes a new memory structure of an extra
forwarding bit per 64-bit memory word. The forwarding bit serves as the flag identifying the

forwarding address. Whenever memory

access finds that the forwarding bit is

set, the reference will be relocated to
the new location indicated by the
content of the old address. Figure 1 is

taken from [1] illustrating an example
of data relocation with memory

forwarding.

1.3 Forwarding without hardware support
Hardware -supported memory forwarding showed an impressive speedup in most applications

by effectively optimizing the data layout with relatively small overheads. But the assumption of

underlying memory structure limited its application and the experimental results are obtained on
the simulator. Why not consider to realize it through software way? It is supposed to have more
flexibility and easy to be applied on the existing systems.

Intuitively, the software -based memory forwarding mechanism should guarantee all of its
implementation in “pure” software, without any additional hardware support. The impact of

excluding the hardware support is twofold: once the additional hardware support is unavoidable, it

will hinder further application in practice and narrow the research of memory forwarding
mechanism in simulator study, instead of a real machine. In contrast, software -based mechanism

can be widely applied in different hardware platform, which will make forwarding technique

available to current hardware architecture.

Compared software-based solution to the hardware-based solution, the essential difference is
that the software supported memory forwarding cannot assume the forwarding bit of each memory
word. Hence it must apply other mechanisms to identify the forwarding addresses. Actually

software implementation needs to simulate the forwarding bit in hardware-based mechanism. To
do this, two approaches come to our mind. One approach is to setting page protection. This

approach acts like the virtual memory system. All the memory pages containing forwarding

address has to be marked as “invalidate”, and when these “invalidate” page is access by user
program, user program will generate the signal of “page fault” and call exceptional routine to

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 3 -

handle forwarding address by looking up mapping table. However this approach is likely to have

large false sharing overhead since the granularity of page seems to be too large for the memory

forwarding implementation.
Another approach involves storing and testing for a certain magic number in place of a

forwarding pointer. The mag ic number serves as the forwarding flag. Once user program accesses

the memory occupied by the magic number, it will try to look up forwarding address in a mapping

table for the final address based on the accessed memory address.
But since software-base forwarding have to insert safety-protection before each memory

reference operation for the pointer forwarding correctness, it also necessarily results in significant

extra software overhead, which turns to be a marginal cost in hardware-base mechanism. The
additional safe -protection operations per memory access may cancel potential gains derived from

good data layout. It is clear that we have to put more concern on the cost/benefit tradeoff than we

did with hardware support, as will be discussed further in section 2.

1.4 Contribution of our study
Our study makes several contributions as follows,

1. We propose a software-based memory forwarding mechanism without any hardware
support, which makes memory-forwarding technique available for current machines

2. We developed an automatic memory -reference profiling tool and provide user program

interface to reduce the difficulty for user to incorporate memory forwarding technique.
3. We prove the user program can really benefit from our memory forwarding optimization

by quantitatively evaluate benefits after applying the technique in a set of non -numeric

applications.
In the following section, we will discuss in detail about the different methods in our

experiment with the consideration of cost/benefit tradeoff. The rest of this report is organized as

follows. We present the basic idea and performance analysis of software based

memory-forwarding mechanism in section 2. Some design issues related to the cost/benefit
tradeoff are discussed in section 3. Section 4 will dis cuss the specific implementation. Section 5
shows our experimental results. We conclude and indicate the possible further directions of

research in Section 6.

2 Software-based Memory Forwarding Mechanism

In this section, we briefly present our basic idea of software -based memory forwarding,
introducing some basic concepts used in following sections. We also discuss a number of

performance issues in software implementation, especially considerable additional instruction

overhead caused by software instrumentation.

2.1 Basic Idea
As mentioned in section 1, we will implement the software-based mechanism by storing and

checking the magic number in forwarding address (Note: Forwarding address refers to the source

address that already forwarded to a new destination address). The old data address is forwarded to

a “memory pool” that pre -allocated by program, and the content of old data address are all storing
magic number after relocation. In this sense, the magic number is used as forwarding “mark” to

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 4 -

1234

5678

9012

0800

0804

0808

Magic Number: 11111

Old addr New addr

?

?

?

5800

5804

5808

old new
11111

11111

11111

0800

0804

0808

Magic Number: 11111

Old addr New addr

0800 5800

0804 5804

0808 5808

1234

5678

9012

5800

5804

5808

old new

Figure 2: Example of data relocation with software memory forwarding

identify which address is supposed to be forwarded to a new address. Although all the forwarding

address supposedly store the magic number, we should prevent the unexpected case in which some

unforwarding addresses happens to store the magic number and mislead the system to invoke the
forwarding mechanism. Thereby, an additional address-mapping table must be managed to keep

track of the forwarding

mapping relation to guarantee

the safe data relocation, just
like the virtual-physical address
mapping table used in the

virtual memory system. When
program believe it is

dereferencing forwarding

address for checking out magic
number storing in that address,

it will map the source address

to the destination address in the

mapping table. Finally, the corresponding content of destination address is sent back to the
program. Typically mapping table includes two fields, e.g., source forwarding address, and
destination address. When necessary, an extra field of forwarding size can be involved to provide

more safe protection. At first glance, the space and time overhead of mapping table maintenance is
only a trivial portion of whole overhead, but our experiment indicate the cost of inserting and

updating this mapping table couldn’t be overlooked in the performance, as will be discussed in

section 2.2.

Before taking a further step, we will present several implications in terms of memory storage.

Two implications in hardware -based mechanism [1] do still take effect in our implementation:

(i) Minimal data relocation unit is the length of a pointer, which called a word;
(ii) Performing byte-size memory access of forwarding address is allowed, but byte offset of

new location should be the same to the original address;

Along with above implication, our software -based mechanism has its specific implications.

First, rather than forwarding the single word one -by-one, our study shows that practical program is

more likely to forward its basic data structure including a bunch of words together, and thereby we
assume the memory space in a basic data structure is continuous whenever before forwarding or

after. The concept of basic structure, which we refer to as a “unit”, can help us reduce most of the

space cost in our mapping table. Second, the length of magic number must be less than the word

length, since it would be able to store in a word of forwarding address. But it is not necessarily
restrict the magic number do occupy all the word space, which give us much more flexibility to
capitalize on the magic number. Finally, in our implementation, only the pointer-related operations

are going to be protected, for the reason that the scalar is not supposed to be forwarded and
scalar-related operation would never access the dynamically allocation space. These implications

would be effective throughout our whole paper.

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 5 -

2.2 Forwarding Gain VS Overhead
It is our main concerns that whether the performance after our optimization can efficiently

improve our program performance or not. Although the software-based mechanism introduce

much more unavoidable ove rhead than hardware -based one, once the gains are able to defeat the

overall overhead, it comes the win. We now describe some potential gain and overhead.

2.2.1 Gain

Similar to the hardware -based mechanism, the potential gain of memory forwarding comes
from the restructuring data layout, which enable new layout to mitigate the problem of memory

latency and thereby enhance the cache performance. In brief, to restructure the data layout tends to

compact the data closer, achieves more compact data layout, and does improve the spatial locality.
Also memory forwarding can make best use of limited memory bandwidth, increase the
prefetching effectiveness, and reduce false sharing in cache -coherent shared-memory

multiprocessing system.

However, it is not always true th at the new data layout can outperform the old one. Therefore
programmer should ensure that the optimization of data layout can actually achieve better memory

reference performance, even without consideration of any software overhead. If this condition
holds, memory forwarding is worth considering.

To this end, concern should be given to figure out when memory forwarding can provide

better data layout, which overcomes additional software overhead. In particular, when meet the

case in which data layout is irregular, data that often visited in a row however are sparsely
allocated, which unable to exploit the benefit of whole cache line, it comes our time to optimize
by memory forwarding. Basically, some dynamically allocated data structures, such as linked lis t,

tree and hash table, will be major optimization sources.

2.2.2 Overhead

The overhead of software -based mechanism grows larger than the hardware-based one. We
will describe this as follows,

i. Forwarding overhead: This overhead refers to as the overhead caused by the forwarding the

source blocks to the destination blocks. It’s the main and almost exclusive overhead in the
hardware -based implementation, but our experiments shows that this overhead only
constitutes a minor portion of our overall overhead, which is not the major concern.

ii. Table maintenance: Surprisingly, the overhead introduced by the table maintenance
overhead is much greater than forwarding overhead. How to reduce table maintenance

overhead becomes an unexpected problem beyond our initial concern . The overall

performance is so considerable due to these two reasons:
iii. 1. The mapping table needs allocation of larger memory space than forwarding memory

pool. Supposedly, if table represents the mapping relationship in the granularity of word,

put in another way, each table items occupying three words describe information of a

forwarding word, leading to three times large space to the forwarding memory pool. This

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 6 -

will greatly limit the availability of memory forwarding technique. 2. table insertion time

and deletion time tends to be larger than the time for forwarding memory block, and

unavoidably introduce unexpected cache miss shown in our experiment, offsetting the
potential gain by memory forwarding.

iv. Safe-protection instrumentation: To provide safe memory access when program happens to

access the forwarding address, we have to instrument safe-protection procedure before each

load/store instruction. Although the forwarding process is seldom invoked and the
forwarding look up time is negligible in most of applications, the critical path of program
grows two or three times longer by additional comparison and conditional branch

instructions. Since these new instrumentation instructions depend on previous instruction,
the potential parallelism is hurt dramatically and the benefit of pipeline cannot be fully

exploited.

v. Additional space overhead: memory forwarding optimization called for several times larger
memory space than original program, which prevent the program from handling original

maximum number of data set.

In essence, the memory forwarding optimization can outperform only if the overall
performance gain could outweigh the extra management overhead. Moreover, the table
maintenance and safe-protection instrumentation cost make up most portion of overall overhead.

We will discuss further on how to reduce the overhead in our implementation.

3 Design Issue

Before providing further insight on the implementation issues, several fundamental design

principles should be clarified first.

3.1 Basic Design Principles
In this section, we discuss the basic and critical design principles of memory forwarding

implementation.

3.1.1 When to insert safety-protection procedure

Generally speaking, we should take care of each pointer-related operations, that is, every
operations using pointer-type variables as operands should be protected by additional

safe-protection procedure. All the operations have to “interpret” the initial address to the final

address before it is taken into effect, as defined in [1]. Mostly, the pointer-related operation is to
dereference the pointer and obtain the memory content. Another easily oblivious case is when

pointer is treated as normal integer and related operations are performed on it, such as pointer

comparison. In some cases, it is tough for compilers to interpret pointer to final address when the

pointer is forcedly converted to another type. For instance, if someone builds up a hash table
with address as its key, the address has to be changed to integer type before looked up in the h ash
table. After memory forwarding, the compiler is more likely to overlook this case since the pointer

has already be converted to non-pointer type and not yet to be considered.

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 7 -

B C C X X X X Y

Flag Index Offset

Figure3 Representation 4 for Magic Number

3.1.2 How to choose the magic number

Based on the fact that we want to use a magic value to replace the forwarding bit and identify
a forwarding address. This value should not be used (or used only very rarely) in the original

execution. Intuitively, we must find such a value across different applications, which is possible

given the huge range of 32-bit values. In practice, the magic number is randomly chosen whereas
cause little false forwarding, and this is proven to be a trivial thing in our implementation.

However, it is interesting to investigate different representations of magic number, for the
reason that magic number can carry additional information for special purposes. We propose four
types of magic number representation below

1. “Pure” Magic Number (32 bits). The whole word space was used to store magic number,

without any other information;
2. Magic Number(24 bits) + Offset(8 bits). The offset is referred to as the word offset in the

forwarding data unit. When using the forwarding table on the granularity of data unit, only the

starting address is stored in the forwarding table. The information of offset is necessary to align

the arbitrary address to the unit starting address.
3. Magic Number(8 bits) + Table Index(20 bits). The table index is referred to as the item

index in the mapping table. So program can quickly find the corresponding table item without any
support from hash table.

4. Magic Number(12 bits) + Partial Table Index(16 bits) + Offset (4 bits). Here comes the

most complex representation of magic number, which is trade-off representation between time and

space consumption. We partition the word into different parts, one stands for the flag of
forwarding address (the original meaning of
magic number), one stands for the highest 16

bits of table index in the linear index table, and

one stands for the offset as mentioned in
former case.

3.1.3 How to return the

memory content of forwarding address

Basically, there are two schemes to return the corresponding content when the program
encounters the memory forwarding
address. The first intuitive scheme is

shown in Figure 4a, when initial address is
found to store a magic number, the

software step into looking up the final

address, then dereference the final address,
and return the content of final address to

destination register. Software has to

iteratively interpret the initial address into

final address unless it makes sure that final address is no longer a forwarding address. But main
problem of this scheme is unable to apply for store into forwarding pointer, since store operation

Initial Address Final Address
Pointer

Table lookup

Content

Figure 4a

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 8 -

only needs information of the final address, rather than its content.

The second scheme is trying to
redirect the pointer to be the final address

after looking up the mapping table, and

access the new memory space with this

redirected pointer. This scheme
permanently redirects the pointer into final
address, thereby avoiding the future

abundant redirection and optimizes away
the future forwarding on the fly. More

importantly, this scheme can be applied in

store operation without any difficulty. So we will use latter scheme in practice.

3.2 Step-by-step issues
Having discussed the basic principles of memory forwarding design, we now focus on the

issues on each memory forwarding step.

3.2.1 Initialization

The memory pool and mapping table should be initialized in initialization step. In our

implementation, we allocate two separate and large chunk of memory block to serve as the
memory pool and mapping table, while mapping table cannot be directly accessed by user
application. To guarantee the forwarding efficiency, the memory pool must be large enough to

hold the relocation data

3.2.2 Relocation

The purpose of this step is to forward the old data into memory pool, and to update the
mapping table. When the maximum forwarding capacity of memory pool is reached, the memory

pool will simply refused to accept new relocation data. As earlier analysis, the table maintenance

overhead should be a major concern. Hash table and linear has different impact on the relocation

performance, as will be discussed in next section.
Another interesting issue is whether the data can be relocated once or relocated multiple

times? Multiple time relocation can improve performance in some case, such as the frequent

insertion/deletion of data structure, but it leads to large maintenance cost and difficult deallocation
strategy. In contrast, one-time data relocation can save a large number of comparison instructions

and conditional branch instructions by not tracing along the forwarding chain, and reducing some

unnecessary relocation time. We can implement this by canceling the relocation operations when it
found the memory block has already been forwarded. As shown in our experiment, this simplified

scheme can work well in some applications.

Initial
Address

Final

Address
Pointer

Table lookup

Content

Figure 4b

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 9 -

3.2.3 Free

Free step is an “annoying”, and greatly related to the relocation step. The typical
implementation of free step is that when program intended to free a memory space, first check if

current address is forwarding address, if so all the related address in the forwarding chain might be

deallocated at the same time. But drawback of this scheme is unaffordable time consumption
and requirement for additional mapping table support, in order to search backwards from final

address to initial address. The one-time reallocation scheme mitigates the program to some extent
since the address can only once forwarded, but the backward mapping table is still unavoidable.
For the purpose of performance, we can take a step back, limited the program not allowing to

release the address in a forwarding chain, including the initial address and final address before the

final clean-up stage. All the forwarding address will be deallocated together at the clean-up step.

3.2.4 Clean-up

Clean-up step aims at cleaning the entire additional space that is unable to handle in the user
program, including the memory pool and the mapping table.

3.3 Additional Concern
i. Compared with the hardware -based implementation, software-based mechanism has its own

characteristic. First no extension of additional instruction set is required. The additional

unforwarded memory operations in hardware mechanism can simply make use of the raw
load/store instruction without the safety-protection instruction in our mechanism, and the
normal load/store instruction would be protected by the forwarding safe-protection code.

Second, the data dependence speculation will be a great help to our performance, since we
have introduced much more branch instruction with the safe protection code, but the

forwarding is almost never happened. We can expect the data dependence speculation

technique will improve the forwarding performance a lot. Finally, software -based
mechanism is much simpler to profile forwarding-related information without providing

user-level trap, such as counter of forwarding load/store.

ii. Avoid calling in new source of cache miss simultaneously when reduce the cache miss by

data relocation
iii. Although optimizing an existing program by forwarding technique require the

application -specific knowledge, forwarding optimization should not mess up the readability

of program. It might provide a set of program interface for user to enjoy inserting additional
optimization code and profiling tool to automatically insert the additional safe-protection

code.

4 Implementation

In this section, we present some implementation structure and further discuss several possible

implementation details.

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 10 -

User Application

Compiler

Operating System

Hardware

User Interfaces
Compiler Support

Figure 5 software based memory forwarding

4.1 Structure
Basically, the software based memory forwarding is composed of two levels: user application

interface and compiler-level support. Its structure is showed below (Figure 6):

The user interfaces provide APIs for the user application to relocate addresses and

dynamically optimize the data layout of the program. The compiler support takes the

responsibility to automatically forward old addresses to new addresses in a way that is transparent
to the application programmer, which won’t cause extra burden of programming involved in
guaranteeing the correctness of memory accesses. And implementing the frequently -called

checking code at a low level is also the requirement of performance.

Compiler Support: As we mentioned earlier, each

pointer-related memory access will be expended to
several related steps: loading the content of the

address, comparing it with magic number, looking it

up in the table if match and updating the pointer if it

points to a forwarding address. These additional
operations are very expensive and we should reduce
the overhead as much as possible. SUIF[4, 5, 6] is

feasible way to insert extra “instructions” before
each any instructions in the user programs. Along

with the aid of SUIF, DDAN is a useful profiling pass to collect the profiling information of each

memory reference instruction. Although the initial objective of DDAN is used to collect the
profiling data and not get much concern with the performance of final code, it provide a way for

us to implement automatic ally instrumentation. We modify the DDAN profile pass insert memory

forwarding safety -protection code to meet our goal.

User Interface: We provide four APIs for user program, corresponding to each steps discussed in
section 3.2:

mf-initialize(); Setup the necessary environment for user application. It includes the creating of

address mapping table(s), and initializing a memory space serving as destination addresses which

holds the real data.

Relocate(UINT **src, UINT n_word); src refers to as the initial address that users want tot

relocate. n_word is number of Relocate the original address, updating the address mapping table,

storing a magic number, moving the data to the new space, and updating the pointer to the new
address. Relocate function is the most frequently called function and its implementation will affect
the whole performance of software based memory forwarding. Several versions of tables and

relocate methods are tried in the experiments to compare the different performance and learn some
general behaviors in the memory forwarding.

myfree(UINT *src): Our own deallocation interface to release the address src, whether it is
forwarding address or not. Normally, this function is invisible to the user program, and the

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 11 -

standard free function will be automatically replaced by it.

mf-finish(); Free memory space and address mapping table(s).

Programmer Intervention: Software based memory forwarding is a useful technique, but it is

too costly if inserting safety-protection code to all the instructions. To avoiding abundant

safety-protection overheads, extending only pointer related memory access is first step towards
this direction. But to further optimize away the unnecessary safety protection code, we need most
of the application -specific knowledge thereby it is difficult for compiler to automatically figure

out where the safety protection code is exactly indispensable.
In this point, we want to investigate when the safety-protection procedure is really useful in

our application. If the programmer hopefully ensures all the current reference to a forwarding

address has already been removed, we guarantee this memory space will not to be accessed again.
Therefore the future safety-protection code is useless to this address. This is referred to as the

perfect memory forwarding. While the case is not achievable, it gives us an idea that we only need

to instrument some additional protection code in some regions we believe to be dangerous.

To this end, we provide some simple interfaces for programmer to indicate compiler which
“dangerous” part of codes need special attention. In our experiment, we compare the
programmer-intervention method and compiler-only method. And the experimental results support

this conclusion. How to make compiler more intelligent to automatically find out the “dangerous”
is an open question to future study.

4.2 Several Different Implementations
To obtain the good performance as much as possible and to understand the general behavior

of memory forwarding, we tried several different solutions.

Address Mapping Table: What kind of table is most desirable? We tried hash table and simple
linear list. At first, we expected that the hash table will give better performance, but it turned out

to be worse than a linear list. The reason for that is looking up in the table is a rare event but
relocation can be a frequent operation, which means a table with simple insert operation is much

preferable to a table with simple retrieval operation. Attaching a new element at the end of list is

much simple and the retrieval also won’t become bottle neck if we designed the magic number
carefully. Another important reason is, using hash table, we didn’t eliminate the irregular data

layout, but just transfer it from the user program to our operations. Take the simple and common

hash function: index = address % table_size for an example. Because the table_size is larger than

the distance of two addresses, after the “mod” operation, the distance of index for two addresses
remain the same. Those irregular data layout in the user program will be transferred to our address
mapping table!

Eliminate Table Maintenance: What if we haven’t the address mapping table at all? In the

experiments, reference to the old address are rarely happened if not never. If all the pointers can be

guaranteed to have the new value, we may not maintain an expensive table at all. Actually, this
violates the correctness requirement of memory forwarding, but we can use it to get an upper

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 12 -

bound performance.

The Granularity of Forwarding: The granularity of a word is not feasible in the software based
memory forwarding as it was in the hardware-supported case. Too fine granularity means long

mapping table and more checking and looking up operations. We implemented both word

granularity and structure granularity in our experiment to justify this.

In summary, we have tried about 20 implementations of each test program in order to get the

general and accurate behavior of software memory forwarding.

5 Experimental Results

We choose two non-numeric benchmarks and one our own tree traverse program in the
experiment. We also manually apply some relocation-based optimizations on these programs. The
goals of the optimizations are improving special locality and reduce cache miss rate. Following is

the application characteristics and experimental environment.

Table1 Application Characteristics
Name Description Source Default Data Set Optimizations Applied Instructions Completed

Heath Simulation of the Columbian

health care system [8]

Olden max.level = 5/4

max.time=500/1000

List linearization 200M

MST Finds the minimum spanning

tree of a graph [8]

Olden 1K node List linearization 414M

Tree Simple tree traverse Ours 2-folds, 20 levels Subtree Clustering 11M

The experiment platform is Linux 2.4.7 (kernel modified by PAPI [7] for the testing purpose)

on Intel Pentium III (1GHz). We also collect some data on the OSF1 on Alpha machine.
Table2 Characteristics of Caches in Intel Pentium III [9]

Cache or Buffer Characteristics

L1 Instruction

Cache

16Kbytes, 4-way set associative, 32-byte cache line size

L1 Data Cache 16Kbytes, 4-way set associative, 32-byte cache line size

L2 Unified Cache 256Kbytes, 4-way set associative, 32-byte cache line size
To fully investigate the impact of the different software -based implementations, we have

implemented several different versions of software-based mechanism. Partial major testing

version is shown as below,
Table3 Different Implementation

 Version Table

Type

Granularity Magic Number Comment

INDEX_WORD Linear Word MAGIC + Index

HASH_WORD Hash Word “pure” MAGIC Two hash table

Multiple Relocation
HASH_UNIT Hash Unit MAGIC + Offset Two hash table

Multiple relocation

HASH_UNIT_SHORT Hash Unit MAGIC + Offset Two hash table

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 13 -

Relocate one-time

HASH_ONE_TABLE Hash Unit MAGIC + Offset One hash table

LINE_TABLE Linear Unit MAGIC + Partial
Index + Offset

For each benchmark application and different memory forwarding implementation, we will
compare the original program performance (denoted Original) and performance after forwarding

optimization (with DDAN). In addition to these cases with and without forwarding optimization,

we also show a case with perfect memory forwarding (Perf). In this case, we assume all the
references to relocated memory space access them in the new address, and we cancel all the

safe-protection code in the program. Although it is unsafe without forwarding protection, this
performance shows the upper boundary of our real forwarding optimization. In particular, we also

shows the performance of our manually instrumentation case (MANUAL) in health problem, as
presented in the section 4.1. It can reduce lots of unnecessary safety-protection code as long as

user believe the “exposed” part is safe in the future memory access, meanwhile it reduces large

potion of overhead in the applications, and leads to a reasonable speedup in health program.

5.1 Performance of Memory Forwarding Optimization
We now illustrate the testing results on the Linux platform. Here we start with analysis of the

performance of memory forwarding optimization (With DDAN), perfect memory forwarding
(Perfect) and original program (Original). All the results below are based on LINE_TABLE

implementation as denoted above. In each figure below, the three clustered bars are referred to as
the health benchmark (health), MST benchmark (MST), and tree traverse (TREE) from left to

right. Each bar in Figure 6 represents the total normalization execution cycles. The Figure 7 shows

the L1 data cache miss times. Figure 8 represents the number of completed instruction. Figure 9
shows the number of total used conditional branches.

 Our first observation from figure 6a is that software-based forwarding mechanism does

achieve reasonable speedup in MST and TREE application. But the total cycles do increase a lot in
the HEALTH benchmark. This result is greatly related to the specific data structure, frequency of

referencing address and relocation time of each application. MST optimize the data structure in the
beginning by relocate the hash table into compact space, and not so often dereference the address

in its post-relocation computation time. So the software -based mechanism can enjoy increasing
data spatiality without introducing large portion of safety-protection overhead. Nevertheless,

Health always applies insertion and deletion operation in the linked list and memory reference

operation makes up a major part of execution time. We have to optimize the linked list from time
to time throughout the processing time and therefore the program suffers from the great amount of

additional code and overhead.

The perfect memory forwarding always outperforms the original problem performance in
these three cases, due to the better data layout and increased spatial locality (But the perfect

forwarding is not necessarily achieving better performance than the original program, as can be
seen in the our data from Alpha machine).

In figure 6 b, the L1 data cache misses reduce a lot in the TREE, since almost all of the
continuous memory reference is not visiting the data in the same cache line. In other two programs

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 14 -

only achieve a moderate cache miss rate reduction, about 10%. The loss of improvement on

potential cache hit rate is mainly caused by additional table maintenance cache miss and

safety-protection instruction.
The conditional branch count in figure 6d gives us more insight on our software -based

forwarding mechanism. The forwarding optimization with full safety-protection has inserted many

conditional branch instructions, which do largely affect the performance of forwarding

optimization. HEALTH is a typical example that large conditional branch cost offsets the potential
gain from reduction of data cache misses. In contrast, MST suffers less than the Health benchmark
in this aspect.

TOTAL CYCLE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3

Original
With DDAN
Perfect

L1 Data Cache Miss

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Original
With DDAN
Perfect

Instruction completed

0

0.2
0.4

0.6

0.8
1

1.2

1.4
1.6

1.8

Original
With DDAN
Perfect

Total Conditional Branches

0

0.2
0.4

0.6

0.8
1

1.2

1.4
1.6

1.8

Original
With DDAN
Perfect

5.2 Performa nce between software-based forwarding versions

The column clusters from the left to the right stand for different software -based version of

LINE_TABLE, HASH_WORD, HASH_UNIT, HASH_SHORT, and HASH_ONE_TABLE
respectively. These figures clearly demonstrate the linear table gives the best performance, and

hash table with word granularity is the worst among the different implementations

MST With Different Implementation L1 Data Cache
Miss

1 2 3 4 5

Original
With DDAN
Perfect

MST With Different Implementation Total Cycle

Original
With DDAN
Perfect

Figure 6a Total Cycles Figure 6b Cache Miss

Figure 6c Instruction Completed Figure 6d Conditional Branch

Figure 7a L1 Cache Miss in MST Figure 7b Total Cycle in MST

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 15 -

5.3 Case study on HEALTH benchmark

We now take a look at the health benchmark in more detail. Health is a health system

simulator, which simulate the patient arrival and leave time to get the statistical data. Health has

two arguments, denoting the number of levels of a tree and iteration times respectively. It will
frequently insert and remove the element from the different linked lists, and we apply the list
linearization optimization on this. An extra counter field is to keep track of how many memory

operations are executed after the last memory relocation. When counter exceeds the threshold
number, the program begin to linearize the linked list. The threshold is normally set to 50 in our

experiment.

Figure 8a compares the effect o f different threshold; small threshold means more relocation
operations, thereby getting worse performance. The threshold of the first colu mn cluster is 50, and

the threshold of the second column cluster is 100. The impact of this difference is quite obvious,

demonstrating the importance of threshold choice.

Figure 8b compares the effect of different arguments. Arguments for the first column cluster
are 5 levels and 500 iterations; arguments for the second column cluster are 4 levels and 1000
iterations. Less tree level and more iterations leads to less data relocation times and keeps around

the same amount of memory access, thus getting better performance.
We also test the two different imp lementations with/without table maintenance overhead. The

result is given in the figure 8c. We can see that without the table maintenance, much better

performance is achieved, showing that table maintenance cost constitute a large portion of overall
overhead .

Health With Different Threshhold

0
500000000
1000000000

1500000000
2000000000
2500000000
3000000000
3500000000

4000000000

1 2

Original
With DDAN
Perfect
DDAN Manual

Health Total Cycles With Different Argument
(Normalized)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3

Original
With DDAN
Perfect
DDAN Manual

Health With/Without Table Maintenance
Total Cycles (Normalized)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3

Original
With DDAN
Perfect
DDAN Manual

Figure 8a Health with different thresholds Figure 8b Health with different arguments

Figure 8c Health with different arguments

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 16 -

5.4 Performance of traversal on the basic tree structure

We now turn our attention to the study on impact of different data spatial locality. We

compare the performance in terms of normalized total execution cycles. The first clustered column

is the case that consequent tree structure cannot share the same cache line, and the second, on the

other hand, can share the share one cache line. Observation from this figure is exactly the same
from our initial imagination. When the data structure is regular, memory forwarding is unable to
achieve speedup since data spatial locality only have little space to improve, but when the original

data layout will come with much cache misses, it comes the time to perform memory forwarding
optimization on that.

Tree With Different distance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Original
With DDAN
Perfect

5.5 Performance on Alpha platform
We collect some data on the Alpha platform to see the optimization performance on different

platform besides PIII. We use the health benchmark to be the test case, and each column

represented different parameters in health system. Surprisingly we observe that even the

performance of perfect memory forwarding is unexpectedly degraded in Alpha platform. That
means the performance of our optimization mechanism is varied with different platforms.

Memory Forwarding on Alpha Machine

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Original

With Memory
Forwarding

6 Conclusions

Memory forwarding is a safe way to dynamically optimize the data layout, which can
improve cache performance by reducing cache misses and facilitate other cache performance

improvement techniques.

The impressive performance gains achieved by hardware implementation of memory
forwarding and its limitation of special hardware support motivate us to implement it through

Figure 9 Health with different arguments

Figure 10 Memory Forwarding on Alpha

 Software Based Memory Forwarding Computer Architecture Course Project Final Report

- 17 -

software. Although there is a great deal of overhead in the software based memory forwarding

mechanism co mpared with hardware -based mechanism, we also found it a feasible and promising

technique. Software memory does achieve speedup on those applications especially with irregular
data layout. Software mechanism also has other advantages. For instance, its fle xibility allows

programmer to apply it wherever necessary. We believe, with the support of operating system, the

overall maintenance overhead will be reduced a lot.

In this paper, we propose some possible ways to reduce the overhead of software mechanism.
Experimenting with several different parameters, we also indicate the future research efforts.

7 Acknowledgments

We would like to thank C-K Luk and Todd Morry for the valuable suggestions on memory

forwarding through emails and discussions. We are also grateful to Pedro Artigas for his DDAN
profile tools. And Shimin Chen gave us help information on the testing tools.

References

[1] Chi-Keung Luk, Todd C. Morry. Memory Forwarding: Enabling Aggressive Layout

Optimizations by Guaranteeing the Safely of Data Relocation”. In Proceedings of 26th Annual
International Symposium on Computer Architecture , May 1999

[2] D. A. Moon. Architecture of the symbolics 3600. In Proceedings of 12th Annual International

Symposium on Computer Architecture , 1985

[3] G. S. Taylor, P. N. Hilfinger, J. R. Larus, D. A Patterson, and B. G. Zorn. Evaluation of the
SPUR Lisp architecture. In Proceedings of 13th Annual International Symposium on Computer
Architecture, 1986

[4] SUIF.Library.Manual http://suif.stanford.edu
[5] SUIF Cookbook Manual http://suif.stanford.edu

[6] SUIF BUILER Library Manual http//suif.stanford.edu

[7] PAPI. http://icl.cs.utk.edu/projects/papi
[8] M. C. Carlisle and Anne Rogers. Software caching and computation migration in olden. In

Proceedings of PPoPP’95, pages 29–38, July1995

[9].IA-32 Intel Architecute Software Developer's Manual V3:System Programming Guide

