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Abstract

Given any collection F of computable functions over the reals, we show that there exists an
algorithm that, given any sentence A containing only bounded quantifiers and functions in F,
and any positive rational number delta, decides either “A is true”, or “a δ-strengthening of A
is false”’. Moreover, if F can be computed in complexity class C, then under mild assumptions,
this “δ-decision problem” for bounded Σk-sentences resides in Σk(C). The results stand in sharp
contrast to the well-known undecidability of the general first-order theories with these functions,
and serve as a theoretical basis for the use of numerical methods in decision procedures for
formulas over the reals.

1 Introduction

Tarski’s celebrated result [24] that the first-order theory of real arithmetic is decidable has had a
profound impact on automated theorem proving, and has generated much attention in application
domains such as formal verification, control theory, and robotics [21]. The hope is that practical
problems can be encoded as first-order formulas and automatically solved by decision procedures for
the theory. However, in spite of extensive research in optimizing the decision algorithms [7], there is
still a wide gap between the state-of-the-art and the majority of problems in practice. One reason
is the procedures’ high computational complexity: general quantifier elimination, even restricted
to a linear signature, has a doubly exponential lower-bound [5]. A more fundamental problem is
the lack of expressiveness: many problems in the intended domains of application cannot even be
expressed in the language of real-closed fields. For instance, Hales’ Flyspeck project [15, 16], which
is working on a formal verification of his proof of the Kepler conjecture, requires checking thousands
of nonlinear inequalities. The following is typical:
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where ai(~x) are all quadratic functions and ∆(~x) is the determinant of a nonlinear matrix. Problems
from formal verification and control design can appear all the more challenging because of the use of
differential equations, alternating quantifiers, as well as their sheer scale. It is well known that even
the set of Σ1 sentences in a language extending real arithmetic with the sine function is already
undecidable. This seems to indicate that developing general logic-based automated methods in
these domains is at its core impossible. Our goal in this paper is to show that a slight change of
perspective provides a completely different, and much more positive, outlook.

It is important to note that the theoretical negative results only refer to the problem of decid-
ing logic formulas symbolically and precisely. In this setting, the numerical computability of real
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functions remains mostly unexploited. This hardly reflects the wide range of solving techniques in
practice. For instance, in the Flyspeck project, the nonlinear formulas are proved using various
numerical optimization techniques, including linear programming, interval analysis, and Bernstein
approximations. In the field of formal verification of real-time systems, a recent trend in developing
decision solvers that incorporate numerical methods has also proved very promising [10, 1, 13, 11].
It is natural to ask whether such practices can be theoretically justified in the context of decision
problems for first-order theories. Namely, can we give a characterization of the first-order formulas
that can be solved using numerically-driven procedures, and if so, bound the complexity of these
procedures? Can we formulate a framework for understanding the guarantees that numerically-
driven decision procedures can provide? Can we provide general conditions under which a practical
verification problem has a satisfactory solution? We answer these questions affirmatively. The
key is to shift to a δ-relaxed notion of correctness, which is more closely aligned with the use of
numerical procedures.

An informal description of what we can show is as follows. In a very general signature that
contains all the aforementioned real functions, there exists an algorithm such that given an arbitrary
sentence ϕ involving only bounded quantifiers, and an arbitrary small numerical parameter δ, one
of the following decisions is returned:

• ϕ is true;

• The “δ-strengthening” of ϕ is false.

The δ-strengthening of a formula, defined below, is a numerical perturbation which makes it slightly
harder for the formula to be true. For example, the strengthening of ∃x ∈ I. x > 0, where I is
the bound on the quantifier, is ∃x ∈ I. x > δ. Thus the algorithm reports either that the given
formula is true, or that some small perturbation makes it false. These two cases are not mutually
exclusive, and in the “grey area” where both cases hold the algorithm is allowed to return either
value. We refer to this problem (as well as the dual problem defined below using the δ-weakening of
formulas) as the “δ-relaxed decision problem,” or simply the “δ-decision problem.” The restriction
to bounded quantifiers is reasonable, since in practical problems real-valued variables are typically
considered within some range.

Here is another way of thinking about our main result. Given a small δ, we can consider
the set of first-order sentences with the property that their truth values remain invariant under
δ-strengthening (or δ-weakening). Such sentences can be called “δ-robust,” in that they do not
fall into the “grey area” mentioned in the last paragraph. We believe that, in situations like the
Flyspeck project where numerical methods are used, it is implicitly assumed that the relevant
assertions have this property. Our algorithm, in particular, decides the truth of bounded δ-robust
sentences in a general signature.

Moreover, we show that the δ-decision problems reside in reasonable complexity classes. For
instance, if the signature is given by extending arithmetic with exp and sin, the δ-decision problem
for bounded Σ1-sentences is “only” NP-complete. This should be compared with the undecidability
of sentences in this class in the ordinary setting. As another example, the δ-decision problem for
arbitrarily-quantified bounded sentences with Lipschitz-continuous ordinary differential equations
is PSPACE-complete. The fact that this complexity is not higher than that of deciding quantified
Boolean formulas is striking.

We find this relaxed decision problem particularly suitable for various practical problems. One
example is formal verification of real-time systems. With bounded model checking techniques [6],
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the safety property of a system can be expressed as a first-order sentence. When such a sentence is
true, we conclude that the system is safe. Thus, by switching to answering the δ-decision problem,
we have the following guarantees. When our algorithm returns that the input sentence is true, we
know that the system is indeed safe; otherwise, we know that a δ-strengthening of the sentence is
false, which means that under some numerical perturbations, controllable by δ, the system would
become unsafe.

The “general signature” we mentioned above refer to arbitrary Type 2 computable functions [25].
We now formally state our results. Let F be any collection of Type 2 computable real functions.
First, there exists an algorithm such that given any LF -sentence ϕ containing only bounded quanti-
fiers, and any positive rational number δ, decides the δ-relaxed decision problem. Secondly, suppose
all the functions in F are in a Type 2 complexity class C (closed under polynomial-time reduc-
tion), then the δ-relaxed decision problem for Σn-sentences in LF resides in (ΣP

n )C. Moreover, the
relaxations are necessary. Without either boundedness or δ-relaxation, the general problem would
remain undecidable.

Related Work Our results are situated with respect to a sizable body of previous work. Ratschan’s
work [22] provided a first study of the effect of numerical perturbations on first-order sentences with
continuous functions, where he focused on formulating conditions under which a formula is “stable
under perturbations”. We prove as a side note that robustness in our definition is undecidable in any
undecidable theory (and decidable in a decidable theory). In Franek, Ratschan, and Zgliczynski’s
most recent joint work [8], it is proved that satisfiability of equations with real-analytic functions
over compact domains is quasi-decidable (this notion allows the non-termination on non-robust
formulas, which we do not). Despite differences in definitions, this in essence agrees with our result
restricted to Σ1-sentences of the corresponding signature, which is a strict subset of Type 2 com-
putable real functions (Type 2 computable functions can be nowhere differentiable). The quantified
cases and complexity were left open in [8]. There is a line of work studying the notion of robustness
in automata theory [3, 9, 2], where positive effects on computability of allowing numerical errors
are also observed. In computational complexity theory, extensive research has been devoted to
how relaxations or approximations affect complexity. The notions are mainly studied with proba-
bilistic setting. It would be interesting to understand its relation to the numerical perturbations
we consider. All the mentioned works agree in the direction of formalizing conditions to explain
effects of approximations and relaxations in practical approaches to hard problems. We believe our
result is the first to prove the decidability and complexity results in the general setting of arbitrary
first-order theories of computable real functions.

The paper is organized as follows. We review the basic properties of computable functions in
Section 2. We define the decision problem and state the main theorems in Section 3, 4, and 5,
and prove the main theorem in Section 6. We then prove complexity results and show that the
conditions are necessary for decidability in Section 7 and 8. We discuss applications and practical
issues in Section 9, and conclude in Section 10.
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2 Preliminaries

2.1 Computable Analysis

Given a finite alphabet Σ, let Σ∗ denote the set of finite strings and Σω the set of infinite strings
generated by Σ. For any s1, s2 ∈ Σ∗, 〈s1, s2〉 denotes their concatenation. An integer i ∈ Z used as
a string over {0, 1} has its conventional binary representation. The set of dyadic rational numbers
is D = {m/2n : m ∈ Z, n ∈ N}.

A (set-) oracle Turing machine M extends an ordinary Turing machine with a special read/write
tape called the oracle tape, and three special states qquery , qyes , qno . To execute M , we specify an
oracle language O ⊆ {0, 1}∗ in addition to the input x. Whenever M enters the state qquery , it
queries the oracle O with the string s on the oracle tape. If s ∈ O, then M enters the state qyes ,
otherwise it enters qno . Regardless of the choice of O, a membership query to O counts only as a
single computation step. A function-oracle Turing machine is defined similarly except that when
the machine enters the query state the oracle (given by a function f : {0, 1}∗ → {0, 1}∗) will erase
the string s on the query tape and write down f(s). Note that such a machine must take |f(s)|
steps to read the output from the query tape. We write MO(x) (resp. Mf (x)) to denote the output
of M on input x with oracle O (resp. f).

Computations over Infinite Strings Standard computability theory studies operations over
finite strings and does not consider real-valued functions. Real numbers can be encoded as infinite
strings, and a theory of computability of real functions can be developed with oracle machines that
perform operations using function-oracles encoding real numbers. This is the approach developed in
Computable Analysis, a.k.a., Type 2 Computability. We will briefly review definitions and results
of importance to us. Details can be found in the standard references [25, 18, 4].

Definition 1 (Names). A name of a ∈ R is defined as a function γa : N→ D satisfying

∀i ∈ N, |γa(i)− a| < 2−i.

For ~a ∈ Rn, γ~a(i) = 〈γa1(i), ..., γan(i)〉.

Thus the name of a real number is a sequence of dyadic rational numbers converging to it. For
~a ∈ Rn, we write Γ(~a) = {γ : γ is a name of ~a}. Noting that names are discrete functions, we can
define

Definition 2 (Computable Reals). A real number a ∈ R is computable if it has a name γa that is
a computable function.

A real function f is computable if there is a function-oracle Turing machine that can take any
argument x of f as a function oracle, and output the value of f(x) up to an arbitrary precision.

Definition 3 (Computable Functions). We say f :⊆ Rn → R is computable if there exists a
function-oracle Turing machine Mf , outputting dyadic rationals, such that:

∀~x ∈ dom(f) ∀γ~x ∈ Γ(~x) ∀i ∈ N. |Mγ~x
f (i)− f(~x)| < 2−i.
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In the definition, i specifies the desired error bound on the output of Mf with respect to f(~x).
For any ~x ∈ dom(f), Mf has access to an oracle encoding the name γ~x of ~x, and output a 2−i-
approximation of f(~x). In other words, the sequence

Mγ~x
f (1),Mγ~x

f (2), ...

is a name of f(~x). Intuitively, f is computable if an arbitrarily good approximation of f(~x) can be
obtained using any good enough approximation to any ~x ∈ dom(f).

Most common continuous real functions are computable [25]. Addition, multiplication, absolute
value, min, max, exp, sin and solutions of Lipschitz-continuous ordinary differential equations are
all computable functions. Compositions of computable functions are computable.

A key property of the above notion of computability is that computable functions over reals
must be continuous.

Theorem 4 ([25]). Any computable function f :⊆ Rn → R is (pointwise) continuous.

Moreover, over any compact set D ⊆ Rn, computable functions are uniform continuous with a
computable modulus of continuity, defined as follows.

Definition 5 (Uniform Modulus of Continuity). Let f :⊆ Rn → R be a function and D ⊆ dom(f)
a compact set. The function mf : N → N is called a uniform modulus of continuity of f on D if
∀~x, ~y ∈ D, ∀i ∈ N,

||~x− ~y|| < 2−mf (i) implies |f(~x)− f(~y)| < 2−i.

Theorem 6 ([25]). Let f :⊆ Rn → R be a computable function and D ⊆ dom(f) a compact set.
Then f has a computable uniform modulus of continuity over D.

Intuitively, if a function has a computable uniform modulus of continuity, then fixing any desired
error bound 2−i on the output, we can compute a global precision 2−mf (i) on the inputs from D
such that using any 2−mf (i)-approximation of any ~x ∈ D, f(~x) can be computed within the error
bound. This suggests the following characterization theorem for computable functions over compact
domains:

Theorem 7 ([18]). A real function f : [0, 1]n → R is computable, iff there exists two computable
functions mf : N→ N and θf : (D ∩ [0, 1])n × N→ D such that

• mf is a uniform modulus function for f over [0, 1]n, and

• for all d ∈ (D ∩ [0, 1])n and all i ∈ N, |θ(d, i)− f(d)| ≤ 2−i.

When the conditions hold, we say f is represented by (mf , θf ).

Note that it is important to know the modulus of continuity to compute f(x) for any x 6∈ D,
since θf only evaluates f on dyadic points.

Complexity of Real Functions We now turn to complexity issues. The ordinary complexity
classes such as P,NP,ΣP

k ,PSPACE for decision problems are defined in the standard way.
Complexity of real functions is usually defined over compact domains. Without loss of generality,

we consider functions over [0, 1]. Intuitively, a real function f : [0, 1] → R is (uniformly) P-
computable (PSPACE-computable), if it is computable by an oracle Turing machine Mf that halts
in polynomial-time (polynomial-space) for every i ∈ N and every ~x ∈ dom(f). Formally, we use
the following definitions:
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Definition 8 ([18]). A real function f : [0, 1]n → R is in PC[0,1] (resp. PSPACEC[0,1]) iff there exists
a representation (mf , θf ) of f such that

• mf is a polynomial function, and

• for any d ∈ (D ∩ [0, 1])n, e ∈ D, and i ∈ N, θf (d, i) is computable in time (resp. space)
O((len(d) + i)k) for some constant k.

More complexity classes will be defined in Section 7 in a similar way. Most common real
functions reside in PC[0,1]: absolute value, polynomials, binary max and min, exp, and sin are all
in PC[0,1]. It is shown that solutions of Lipschitz-continuous differential equations are computable
in PSPACEC[0,1]. In fact, it is shown to be PSPACE-complete in the following sense.

Definition 9 (Hardness [19]). A real function f : D → R is hard for complexity class C if every
(discrete) problem A in C is polynomially reducible to f ; that is, if there exist two polynomial-time
computable functions g : {0, 1}∗ → D and h : {0, 1}∗ × D → {0, 1} and a polynomial function p,
such that ∀w ∈ {0, 1}∗, ∀e ∈ D:

If |e− f(g(w))| ≤ 2−p(n) then w ∈ A↔ h(w, e) = 1.

Proposition 10 ([17]). Let g : [0, 1] × R → R be polynomial-time computable and consider the
initial value problem

f(0) = 0,
df(t)

dt
= g(t, f(t)), t ∈ [0, 1].

Then computing the solution f : [0, 1] → R is in PSPACE. Moreover, there exists g such that
computing f is PSPACE-complete.

3 Bounded Sentences in First-Order Theories with Computable
Functions

We consider first-order formulas with Type 2 computable functions interpreted over the reals. We
write F to denote an arbitrary collection of symbols representing Type 2 computable functions
over Rn for various n. We always assume that F contains at least the constant 0, unary negation,
addition, and the absolute value. (Constants are seen as constant functions.) Let LF be the
signature 〈F , >〉. LF -formulas are always evaluated in the standard way over the corresponding
structure RF = 〈R,F , >〉.

It is not hard to see that we only need to use atomic formulas of the form t(x1, ..., xn) > 0 or
t(x1, ..., xn) ≥ 0, where t(x1, ..., xn) are built up from functions in F . This follows from the fact
that t(~x) = 0 can be written as −|t(~x)| ≥ 0, t(~x) < 0 as −t(~x) > 0, and t(~x) ≤ 0 as −t(~x) ≥ 0.
We can then take expressions s < t and s ≤ t to abbreviate t − s > 0 and t − s ≥ 0, respectively.
Moreover, when a formula is in negation normal form, the negations in front of atomic formulas can
be eliminated by replacing ¬t(~x) > 0 with −t(~x) ≥ 0, and ¬t(~x) ≥ 0 with −t(~x) > 0. In summary,
to avoid extra preprocessing of formulas, we give an explicit definition of LF -formulas as follows.

Definition 11 (LF -Formulas). Let F be a collection of Type 2 functions, which contains at least
0, unary negation -, addition +, and absolute value | · |. We define:

t := x | f(t(~x)), where f ∈ F , possibly constant;

ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.
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In this setting ¬ϕ is regarded as an inductively defined operation which replaces atomic formulas
t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches ∧ and ∨, and switches ∀ and ∃.
Implication ϕ1 → ϕ2 is defined as ¬ϕ1 ∨ ϕ2.

For notational convenience, from now on we assume that F always contains all rational con-
stants.

Definition 12 (Bounded Quantifiers). We use the notation of bounded quantifiers, defined as

∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ),

∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v)→ ϕ),

where u and v denote LF terms whose variables only contain free variables in ϕ, excluding x. It is
easy to check that ∃[u,v]x.ϕ↔ ¬∀[u,v]x.¬ϕ.

We say a sentence is bounded if it only involves bounded quantifiers.

Definition 13 (Bounded LF -Sentences). A bounded LF -sentence is of the form

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn.ψ(x1, ..., xn)

where Q
[ui,vi]
i s are bounded quantifiers, and ψ(x1, ..., xn) is a quantifier-free LF -formula (the ma-

trix).

Remark 14. Note that by the definition of bounded quantifier, in the bound [u1, v1] on the first
quantifier, the terms u1 and v1 can only be built from constants in F since there is no other free
variables in

Q
[u2,v2]
2 x2 · · ·Q[un,vn]

n xn.ψ(x1, ..., xn),

excluding x1.

We sometimes write a bounded sentence as ~Q[~u,~v]~x.ψ(~x).

Notation 15. We will often write a matrix ψ(x1, ..., xn) as

ψ[t1(~x) > 0, ..., tk(~x) > 0; tk+1(~x) ≥ 0, ..., tm(~x) ≥ 0]

to emphasize the fact that ψ(~x) is a positive Boolean combination of the atomic formulas shown.

We use the conventional notations for the alternation hierarchy. Namely, Σn (resp. Πn) denotes
the set of all LF -sentences in prenex form with n alternating quantifier blocks starting with ∃ (resp.
∀).

Since trigonometric functions allow us to encode natural numbers and consequently Diophantine
equations, it is well-known that

Proposition 16. If {+,×, sin} ⊆ F , then it is undecidable whether an arbitrary Σ1-sentence in
LF is true.

In what follows, we show that in contrast to negative results like this (which is further discussed
in Section 8), a δ-relaxed version of the decision problem for general LF -sentences has much better
computational properties.
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4 δ-Variants

In this section we define δ-weakening and δ-strengthening of bounded LF -sentences, which explicitly
introduce syntactic perturbations in a formula. They are used to formalize the notion of δ-relaxed
decision problems for LF -sentences.

We will write a bound [u, v] as I for short.

Definition 17 (δ-Variants). Let δ ∈ Q+ ∪ {0}, and ϕ a bounded LF -sentence of the form

QI11 x1 · · ·Q
In
n xn.ψ[ti > 0; tj ≥ 0],

where i ∈ {1, ...k} and j ∈ {k+ 1, ..., j}. The δ-strengthening ϕ+δ of ϕ is defined to be the result of
replacing each atomic formula ti > 0 by ti > δ and each atomic formula tj ≥ 0 by tj ≥ δ, that is,

QI11 x1 · · ·Q
In
n xn.ψ[ti > δ; tj ≥ δ],

where i ∈ {1, ...k} and j ∈ {k + 1, ..., j}. Similarly, the δ-weakening ϕ−δ of ϕ is defined to be
the result of replacing each atomic formula ti > 0 by ti > −δ and each atomic formula tj ≥ 0 by
tj ≥ −δ, that is,

QI11 x1 · · ·Q
In
n xn.ψ[ti > −δ; tj ≥ −δ].

Note that in the definition, the bounds on the quantifiers are not changed. In fact, we can talk
about δ-variants of unbounded formulas as well, which will be mentioned in Section 8. Note also that
ϕ+0 and ϕ−0 are both equivalent to ϕ, and that the notions of strengthening and weakening could
have been given a uniform definition by allowing δ to range over positive and negative numbers. We
find it a useful mnemonic, however, to have ϕ+δ denote a slight strengthening of ϕ (the modified
atomic constraints make it slightly harder for ϕ+δ to be true), and to have ϕ−δ denote a slight
weakening.

Proposition 18. Suppose δ, δ′ ∈ Q+ ∪ {0} satisfy δ ≥ δ′. Then we have:

1. ϕ+δ → ϕ+δ′ → ϕ→ ϕ−δ
′ → ϕ−δ.

2. (Duality) ¬(ϕ+δ)↔ (¬ϕ)−δ.

This follows immediately from the definitions.
We say that a sentence is δ-robust if its truth value remains invariant under δ-weakening.

Definition 19 (δ-Robustness). Let δ ∈ Q+ ∪ {0} and ϕ be a bounded LF -sentence. We say ϕ is
δ-robust, if ϕ−δ → ϕ. We say ϕ is robust if it is δ-robust for some δ ∈ Q+.

More precisely, we can say that a formula ϕ is robust under δ-weakening if it has this property,
and define the analogous notion of being robust under δ-strengthening. The two notions have similar
properties; for simplicity, we will restrict attention to the first notion below.

By Proposition 18, we always have ϕ→ ϕ−δ, so ϕ is δ-robust if and only if we have ϕ↔ ϕ−δ.
Since ϕ−δ → ϕ is equivalent to ¬ϕ−δ ∨ϕ, saying that ϕ is robust is equivalent to saying that either
ϕ is true or ϕ−δ is false. Intuitively, this means that either ϕ is true, or “comfortably” false in the
sense that no small perturbation makes it true.
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Proposition 20. Let ϕ be a bounded LF -sentence, and δ, δ′ ∈ Q+ ∪ {0}.
1. If ϕ is true, then it is δ-robust for any δ.
2. Suppose δ ≥ δ′. If ϕ is δ-robust, then it is δ′-robust.

Proof. By the observations above, the first is immediate, and the second follows from Proposition 18.

Remark 21. Note that the negation of a robust sentence may be non-robust.

Now we are ready to state our main results.

5 The Main Theorem

Theorem 22. There is an algorithm which, given any bounded LF -sentence ϕ and δ ∈ Q+, correctly
returns one of the following two answers:

• “True”: ϕ is true.

• “δ-False”: ϕ+δ is false.

Note that the two cases can overlap. If ϕ is true and ϕ+δ is false, then the algorithm is allowed
to return either one.

Corollary 23. There is an algorithm which, given any bounded ϕ and δ ∈ Q+, correctly returns
one of the following two answers:

• “δ-True”: ϕ−δ is true.

• “False”: ϕ is false.

Proof. Apply the previous algorithm to ¬ϕ. Proposition 18, we have ¬(ϕ)+δ ↔ (¬ϕ)−δ. So if ¬ϕ
is True we can report that ϕ is False, and if ¬ϕ is δ-False we can report that ϕ is δ-True.

Corollary 24 (Robustness implies decidability). There is an algorithm that, given δ ∈ Q+ and a
bounded δ-robust ϕ, decides whether ϕ is true or false.

Proof. Apply the previous algorithm to ϕ. By the definition of δ-robustness, if ϕ is δ-True, then it
is True.

Corollary 25. Let L be a class of bounded LF -sentences. Suppose it is undecidable whether an
arbitrary sentence in L is true. Then it is undecidable, given any δ ∈ Q+, whether an arbitrary
bounded L-sentence is δ-robust.

Proof. Let ϕ be an arbitrary LF -sentence from L. Suppose there exists an algorithm that decides
whether ϕ is δ-robust. Then, we can first decide whether ϕ is δ-robust. If it is not, then following
Proposition 20, ϕ has to be false. On the other hand, if it is, then following Corollary 24 it is
decidable whether ϕ is true. Consequently combining the two algorithms we can decide whether ϕ
is true. This contradicts the undecidability of sentences in L.

This can be contrasted with the simple fact that if RF has a decidable theory, then it is decidable
whether any bounded LF -sentence is robust, since the condition in Definition 19 is just another
bounded LF -sentence.

In the next section we prove the main theorem, and determine the complexity of the algorithm
in the following section.
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6 Proof of the Main Theorem

We now prove the decidability of the δ-decision problems. First, any F can be extended it as
follows.

Definition 26 (m-Extension). Let F be a collection of computable functions over reals. We define
the m-extension of F , written as Fm, to be the closure of F with the following functions:

• Binary min and max: min(·, ·),max(·, ·);

• Bounded min and max:

min{t(~x, ~y) : y1 ∈ [u1, v1], ..., yn ∈ [un, vn]},

max{t(~x, ~y) : y1 ∈ [u1, v1], ..., yn ∈ [un, vn]},

where ui and vi denote arbitrary LFm-terms that do not involve yi.

It is a standard result in computable analysis that applying minimization and maximization over
a bounded interval preserves computability. (This is studied in detail in Chapter 3 of [18].) Thus all
functions in Fm are computable. We can write the bounded min and max as min~x∈D(t(~x, ~y)) and
max~x∈D(t(~x, ~y)) for short, where D = [u1, v1]×· · ·× [un, vn]. For technical reasons that will become
clear in Section 7, we interpret [u, v] as [v, u] when v < u; one can rule out this interpretation by
adding u ≤ v as an explicit constraint in the formula.

Now we define a notion that allows us to switch between strict and nonstrict inequalities in the
δ-decision problem.

Definition 27 (Strictification). Suppose ϕ is the formula

~Q
~I~x.ψ[t1 > 0, ..., tk > 0; tk+1 ≥ 0, ..., tm ≥ 0].

We say ϕ is strict (resp. nonstrict), if m = k (resp. k = 0), i.e., all the inequalities occurring in
ϕ are strict (resp. nonstrict). The strictification of ϕ is defined to be

st(ϕ) : ~Q
~I~x.ψ[t1 > 0, ..., tk > 0, tk+1 > 0, ..., tm > 0],

that is, the result of replacing all the nonstrict inequalities by strict ones. The destrictification of
ϕ is

de(ϕ) : ~Q
~I~x.ψ[t1 ≥ 0, ..., tk ≥ 0, tk+1 ≥ 0, ..., tm ≥ 0],

this is, the result of replacing all strict inequalities by nonstrict ones.

Note that the bounds on the quantifiers are not changed in the definition. The following fact
follows directly from the definition.

Proposition 28. We have

• st(ϕ)→ ϕ and ϕ→ de(ϕ).

• (Duality) st(¬ϕ) is equivalent to ¬de(ϕ).

10



Now we prove the key lemma. It establishes that any bounded LF -sentence can be expressed
as an atomic formula in the extended signature LFm .

Lemma 29. Let ϕ be a bounded LF -sentence. There is an LFm-term α(ϕ) that satisfies:

• de(ϕ)↔ α(ϕ) ≥ 0, and st(ϕ)↔ α(ϕ) > 0;

• de(ϕ+δ)↔ α(ϕ) ≥ δ, and st(ϕ+δ)↔ α(ϕ) > δ.

Proof. We define α inductively as:

• For an atom t > 0 or t ≥ 0, α(ϕ) = t.

• α(ϕ ∧ ψ) = min(α(ϕ), α(ψ)).

• α(ϕ ∨ ψ) = max(α(ϕ), α(ψ)).

• α(∃[u,v]x.ϕ) = maxx∈[u,v](α(ϕ)).

• α(∀[u,v]x.ϕ) = minx∈[u,v](α(ϕ)).

The properties are then easily verified. As an example we show that de(ϕ) ↔ α(ϕ) ≥ 0 holds.
Note that de(ϕ) only contains nonstrict inequalities.

• For atomic formulas, t ≥ 0↔ α(t) ≥ 0.

• α(ϕ ∧ ψ) ≥ 0 is defined as min(α(ϕ), α(ψ)) ≥ 0, which is equivalent to α(ϕ) ≥ 0 ∧ α(ψ) ≥ 0.
By inductive hypothesis, this is equivalent to de(ϕ) ∧ de(ψ), which is just de(ϕ ∧ ψ). The
binary max case is similar.

• α(∃[u,v]x.ϕ) ≥ 0 is defined as maxx∈[u,v](α(ϕ)) ≥ 0, which is equivalent to ∃[u,v]x.α(ϕ) ≥ 0. (If
the max of α(ϕ) is bigger or equal than zero, then there exists a ∈ [u, v] such that α(ϕ(a)) ≥ 0;
and vice versa.) By inductive hypothesis, α(ϕ) ≥ 0 is equivalent to ∃[u,v]x.ϕ. The bounded
min case is similar.

Example 30. Suppose
ϕ : ∀[0,1]x1∃[0,x1]x2.(ex1 > 0 ∧ x2 ≥ 0).

Then
α(ϕ) = min

x1∈[0,1]
( max
x2∈[0,x1]

(min(ex1 , x2))).

Now we are ready to establish the main theorem. The idea is that for any formula ϕ, the
strictification of ϕ is equivalent to the formula α(ϕ) > 0. Whether this holds cannot, in general,
be determined algorithmically, But given a small δ, we can make a choice between the overlapping
alternatives α(ϕ) > 0 and α(ϕ) < δ, and this is enough to solve the relaxed decision problem.

11



Proof of Theorem 22. Let ϕ be an arbitrary LF -sentence of the form

ϕ : Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn. ψ[t1 > 0; tj ≥ 0],

where i ranges in from 1 to k, and j from k + 1 to m.
Following Lemma 29, we can find an LFm-term α(ϕ), which satisfies:

• st(ϕ) is equivalent to α(ϕ) > 0, and

• (de(ϕ)+δ) is equivalent to α(ϕ) ≥ δ.

Since ϕ is a closed sentence with no free variables, α(ϕ) is a term whose variables are all bounded
by the min and max operators. Thus, α(ϕ) is a computable constant. Let M be the machine that
computes α(ϕ). We have

∀i ∈ N, |M(i)− α(ϕ)| < 2−i,

where M(i) is a dyadic rational number, we write this number as dα(ϕ)ei.
Since δ is a given positive rational number, it is easy to find a dyadic rational number that

approximates δ to an arbitrary precision. This is needed for the technical reason that we want δ
to have a finite binary representation. We now pick δ′ to be a dyadic number satisfying

|δ′ − δ| < δ

8
.

Next, let k ∈ N satisfy 2−k < δ′/4. This number is then used to query the machine M as the
precision requirement. Namely, we have

|dα(ϕ)ek − α(ϕ)| < 2−k <
δ′

4
.

We now compare dα(ϕ)ek with δ′/2. Note that both numbers are dyadic rationals with finite
length, and this inequality can be effectively tested. To emphasize, we label this test:

dα(ϕ)ek ≥
δ′

2
. (1)

The result of this test generates two cases, as follows.

• Suppose (1) is true. Then we know that

α(ϕ) > dα(ϕ)ek −
δ′

4
>
δ′

2
− δ′

4
=
δ′

4

>
1

4
(
7

8
δ) =

7

32
δ.

Consequently, α(ϕ) > 0. Thus, in this case, we know st(ϕ) is true. Following Proposition 28,
we know ϕ is true, and return True.

• Suppose (1) is false. Then we know that

α(ϕ) < dα(ϕ)ek +
δ′

4
<
δ′

2
+
δ′

4
=

3

4
δ′

<
3

4
(
9

8
δ) =

27

32
δ.

Consequently, α(ϕ) < δ. Thus, in this case, de(ϕ+δ) is false. Following Proposition 28, we
know ϕ+δ is false, and return δ-False.

12



In all, we have described an algorithm for deciding, given any bounded LF -sentence ϕ and δ ∈ Q,
whether ϕ is true, or the δ-strengthening of ϕ is false.

7 Complexity and Lower Bounds

In this section we consider the complexity of the δ-decision problem for signatures of interest. In
the proof of the main theorem, we have established a reduction from the δ-decision problems of
LF to computing the value of LFm-terms with alternations of min and max. The complexity of
computing such terms can be exactly characterized by the min-max hierarchy over computable
functions, as defined in [18].

First, we need the definition of Σk,C[0,1]-functions.

Definition 31 ([18]). For k ≥ 0, we say a real function f : [0, 1]→ R is in Σk,C[0,1] (resp. Πk,C[0,1])
if there exists a representation (mf , θf ) of f , such that

1. The modulus function mf : N→ N is a polynomial, and

2. for all d ∈ D ∩ [0, 1] and all i ∈ N, |θf (d, n)− f(d)| ≤ 2−i, and the set Aθf = {〈d, e, 0i〉 : e ≤
θf (d, i)} is in Σk (resp. Πk). (0i denotes the string of i zeros.)

Remark 32. Note that using membership queries to Aψ, we can easily (in polynomial-time) de-
termine the value of ψ(d, i). Thus by replacing the third condition with P or PSPACE, we obtain
the definition of PC[0,1] and PSPACEC[0,1]. It is also clear that Σ0,C[0,1] = Π0,C[0,1] = PC[0,1].

The key result as shown by Ko [18] is that, if f(x, y) is in PC[0,1], then maxx∈[0,1] f(x, y) is in
NPC[0,1]. In general, Ko proved that:

Proposition 33 ([18]). Let f : [0, 1]n → R be a real function in PC[0,1]. Define g : [0, 1]m0 → R as

g(~x0) = max
~x1∈[0,1]m1

min
~x2∈[0,1]m2

· · · opt
~xk∈[0,1]mk

f(~x0, ~x1, ..., ~xk)

where opt is min if k is even and max if k is odd, and
∑k

i=0mi = n. We then have g ∈ Σk,C[0,1].

Following the definition of Σk,C[0,1]-classes, it is straightforward to obtain the decision version
of this result, and also to relativize to complexity classes other than PC[0,1].

Lemma 34. Suppose f : [0, 1]n → R is in complexity class C with a polynomial modulus function.
Define g : [0, 1]m0 → R as

g(~x0) = max
~x1∈[0,1]m1

min
~x2∈[0,1]m2

· · · opt
~xk∈[0,1]mk

f(~x0, ~x1, ..., ~xk)

where opt is min if k is even and min if k is odd, and
∑k

i=0mi = n. Then there exists a represen-
tation of g, (mg, θg), such that the following problem is in (ΣP

k )C: given any d, e ∈ D and i ∈ N,
decide if θg(d, i) ≥ e.

Definition 35. Let ϕ be of the form

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n ψ(x1, ..., xn).

We define ϕ[0,1] to be

ϕ[0,1] = Q
[0,1]
1 x1 · · ·Q[0,1]

n xnψ
[
xi
/

(ui + (vi − ui)xi)
]
.
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It is clear that ϕ and ϕ[0,1] are equivalent and the transformation can be done in polynomial-
time. Now we are ready to state the complexity results for the δ-decision problems.

Theorem 36. Let F be a class of computable functions. Let S be a class of LF -sentences, such that
for any ϕ in S, the terms in ϕ[0,1] are computable in complexity class C where PC[0,1] ⊆ C ⊆ PSPACEC[0,1].

Then, for any δ ∈ Q+, the δ-decision problem for bounded Σn-sentences in S is in (ΣP
n )C.

Proof. Consider any Σk-sentence ϕ ∈ S. Write ϕ[0,1] as

∃[0,1]m1
~x1∀[0,1]

m2
~x2 · · ·Q[0,1]mk

k ~xk ψ(~x1, ..., ~xk),

where Qk is ∃ if k is odd and ∀ otherwise.
Note that since PC[0,1] ⊆ C ⊆ PSPACEC[0,1], C is closed under polynomial-time reduction, and

every function in C has a polynomial modulus function over [0, 1].
Following the algorithm in the proof of Theorem 22, we compute the LFm-term α(ϕ[0,1]), which

is of the form
α(ϕ[0,1]) : max

~x1∈[0,1]m1
min

~x2∈[0,1]m2
· · · opt

~xk∈[0,1]mk

α(ψ)

where opt is max if k is odd and min otherwise. This step uses linear time and α(ϕ[0,1]) is linear
in the size of ϕ.

Following the assumptions on S, all terms in ψ are computable in C. It follows that α(ψ)
is computable in C, which can be shown inductively as follows. For atomic formulas, α(ψ) is a
term computable in C. If ψ = φ1 ∧ φ2 (resp. φ1 ∨ φ2) then by definition α(ψ) = min(α(φ1), α(φ2))
(resp. max(α(φ1), α(φ2))), where α(φ1) and α(φ2) are C-computable by inductive hypothesis. Since
the binary min(·, ·) and max(·, ·) are both computable in polynomial-time and C is closed under
polynomial-time reduction, we have that α(ψ) is C-computable.

Let α(ϕ[0,1]) be represented by (mα(ϕ), θα(ϕ)). Now, since α(ψ) is C-computable (and has a
polynomial modulus function), following Lemma 34, we know that given any e ∈ D and i ∈ N,

deciding θα(ϕ)(i) ≥ e is in ΣP
k
C
. (Note that α(ϕ[0,1]) is a 0-ary function). In the proof of Theorem 22,

we checked the condition α(ϕ)(k) ≥ δ′/2 in (1). Here, both δ′ and k are computed in linear time.
Thus, the condition can be checked in (ΣP

k )C.
In all, we described a polynomial-time reduction from the δ-decision problem of a Σk-sentence

ϕ in LFm to a (ΣP
k )C problem. Thus, the δ-decision problem resides in (ΣP

n )C.

Remark 37. We used the assumption that all the terms uniformly reside in some complexity class
C. It is not enough to assume only that the signature F is in C, since the formulas can contain an
arbitrary number of function composition. The complexity of evaluating composition of functions
can easily be exponential in the number of iterative composition operations (with linear functions).
This would trivialize the problem. Under the current assumption, each LF -term that occur in S is
encoded as a function in C and such composition is not allowed. Thus the complexity is measured
in terms of the length of the Boolean combinations of the LF -terms.

As corollaries, we now prove completeness results for signatures of interest.

Corollary 38. Let F be a set of P-computable functions (which, for instance, includes exp and
sin). The δ-decision problem bounded Σn-sentences in LF is ΣP

n -complete.
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Proof. Following the above theorem deciding a bounded Σn-sentence is in (ΣP
n )

P
, which is just ΣP

n .
Hardness can be shown by encoding quantified Boolean satisfiability. We need to be careful

that positive atoms are used to express negations. Let θ be a Boolean formula in CNF, whose
propositional variables are p1, ..., pm. Substitute pi by x > 0 and ¬pi by −xi > 1, and add the
clause (xi > 0∨−xi > 1) to the original formula as a conjunction. Then substitute Qpi by Q[−2,2]xi
where Q is either ∃ or ∀. It is easy to see that new the formula is robust for any δ < 1/2, and
equivalent with the original Boolean formula.

Corollary 39. Suppose F consists of Lipschitz-continuous ODEs over compact domains. The
δ-decision problem for bounded LF -sentences is PSPACE-complete.

Proof. Following Proposition 11, the problem is in PSPACE since NPPSPACE = PSPACE [23]. Thus
all the Σn-classes are lifted to PSPACE. It is PSPACE-hard since it subsumes solving any single
ODE, which is itself a PSPACE-complete problem.

8 Comparison with Negative Results

We can contrast the above results with the following negative results, to show that both the bound-
edness and δ-relaxation are necessary for decidability. We allow the signature LF to be arbitrary
Type 2 computable functions, then without either boundedness or robustness, LF -sentences are
undecidable.

Proposition 40. There exists F such that it is undecidable whether an arbitrary quantifier-free
sentence (and thus trivially bounded) in LF is true.

Proof. Define hn : N → N as hn(t) = 1 if the n-th Turing machine Mn halts in t steps, and 0
otherwise. Define

γn : N→ Q, γn(k) =

k∑
i=1

hn(i) · 2−i.

Note that γn is convergent and can be seen as a name of a real number an, and an = 0 iff the
machine Mn halts. Thus, if {ai : i ∈ N} ⊆ F , there does not exist an algorithm that can decide
whether an arbitrary quantifier-free LF -sentence of the form ai = 0 is true.

The proof of this proposition involves adding countably many constant symbols to the language,
one for each ai. Alternatively, it is not hard to define a single computable function g : Q→ R such
that for each i ∈ N, g(i) = ai, by interpolating outputs linearly for inputs between integer values.

Proposition 41. There exists F such that it is undecidable whether an arbitrary δ-robust quantifier-
free LF -sentence is true.

Proof. Let the set {ai : i ∈ N} be defined as in the previous proof. Then the function fn(x) = anx,
which is computable since an is computable, has the property that fn(x) = 0 iff the n-th Turing
machine halts, and ∃x.fn(x) = r for any r ∈ R. This existential sentence is consequently δ-robust
for any δ. Thus, there does not exist an algorithm that can decide whether an arbitrary δ-robust
bounded Σ1-sentence of the form ∃x.fn(x) = r (r 6= 0) is true. Note that if we bound the quantifier
∃x, this proof does not go through. Because fixing any bound x ≤ u and δ ∈ Q+, there exists an ak
such that ak · u < δ, which makes the formula not δ-robust. Such an ak corresponds to a machine
k which may halt after i steps, as long as 2−iu < δ.
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Again it is not hard to replace fn(x) by a single function h(y, x).
Consequently, both boundedness and robustness are necessary for decidability of LF -sentences,

if we allow F to be arbitrary Type 2 computable functions. Moreover, we can ask the following
questions. Given a restrict signature, say P-computable functions including × and sin, is it the case
that without either boundedness or robustness, simple LF -sentences are undecidable? Answering
this should require explicit construction which is beyond the scope of this paper. We list them as
questions here.

Question 42. Suppose F contains {+,×, sin} or a reasonable extension of it with natural P -
computable functions. Is it undecidable whether an unbounded δ-robust Σ1-sentence in LF is true?
Is it undecidable whether a bounded Σ1-sentence is true?

It seems plausible that both questions can be answered affirmatively. For instance in [14], it is
proved that there exists a δ-robust encoding of Turing machines using the signature only. In [20], a
recent improvement on Richardson’s theorem, it is proved that there exists a function f obtainable
from the signature such that it is undecidable whether it has a zero.

9 Discussion

9.1 Applications

Our focus in the paper is to prove theoretical results to show the possibility of using numerical
algorithms in solving hard decision problems over reals. In practice, our framework allows the use
of various practical numerical techniques. What we have shown provides a framework of the general
evaluation of numerical methods in the context of decision problems. Namely, to justify the use
of a particular numerical method, we only need to prove that it can solve the δ-decision problem
correctly, and thus suitable for the corresponding applications. If this is the case, we call such
a method “δ-complete”. Numerical methods that have the δ-completeness guarantees should be
regarded also suitable for correctness-critical problems such as formal verification and automated
theorem proving, as shown in our work [12, 13]. As an on-going project, we are using our theory
to guide the implementation of a δ-complete solver dReal, and have observed promising results in
applications.

9.2 Extensions

We have studied the δ-decision problem for bounded first-order sentences over the reals with com-
putable functions. In fact, the theory of computable functions can be developed over any domain
whose elements can be encoded as infinite strings over some finite alphabet. To show decidability of
the δ-decision problems, we exploit the compactness of the domain of the variables, and continuity
of the computable functions over the domain. Thus, the same line of reasoning can be applied
to general compact metric spaces other than the bounded real intervals, such as functions and
sets. Such extensions can be useful, for instance, for showing decidability results for (δ-versions
of) control problems of dynamical systems, which can be expressed as first-order formulas in the
corresponding domains.
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10 Conclusion and Future Work

In this paper we defined a relaxed notion of decision problems for first-order sentences over reals. We
allow a decision procedure to return answers that can have one-sided, bounded, numerical error.
With this slight relaxation, which can be well-justified in practice, bounded sentences in many
important but undecidable theories become decidable, with reasonable complexity. For instance,
solving bounded existential sentences with exponential and sine functions become theoretically no
harder than solving SAT problems, and solving the quantified sentences with Lipschitz-continuous
ODEs are no harder than solving quantified Boolean formulas. We regard the implications of these
theoretical results to be profound. The framework we proposed can also be directly used as a
framework for guiding the use of numerical methods in decision solvers. In future work, it would
be very interesting to see how this framework can be used in developing efficient SMT/SAT solvers
and theorem provers. Also, the theoretical relation to approximations in complexity theory is worth
investigating.
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