
Minimizing User Cost for Shared Autonomy
Shervin Javdani, J. Andrew Bagnell, Siddhartha S. Srinivasa

Robotics Institute, Carnegie Mellon University
{sjavdani, dbagnell, siddh}@cs.cmu.edu

Abstract—In shared autonomy, user input and robot autonomy
are combined to control a robot to achieve a goal. One often used
strategy considers the user and autonomy as independent decision
makers, with the system blending these decisions. However,
this independence leads to suboptimal, and often frustrating,
behavior. Instead, we propose a system that explicitly models the
interplay between the user and assistance. Our approach centers
around the idea of learning how users respond to assistance. We
then propose a cost minimization framework for assisting while
utilizing this learned model.

I. INTRODUCTION

Robotic teleoperation enables a user to achieve their goal by
providing inputs into a robotic system. In direct teleoperation,
user inputs are mapped directly to robot actions, putting
the burden of control entirely on the user. However, input
interfaces are noisy, and often have fewer degrees of freedom
than the robot they control. This makes operation tedious, and
many goals impossible to achieve. Shared autonomy seeks to
alleviate these issues by combining manual teleoperation with
autonomous assistance.

Dragan and Srinivasa [1] show that nearly all prior shared
autonomy methods can be thought of as a blending between
two independent sources - user inputs and an autonomous
policy. Methods differ in the autonomous policy used, and
how the blending is done. Potential field methods [2] combine
direct teleoperation with a policy which pushes the robot
away from obstacles and towards goals. Virtual fixtures [3],
[4] combine direct teleoperation with an autonomous policy
that projects the robot onto path constraints. Autonomous task
completing systems [5], [6] use goal achieving policies, and
give full control to either the user or autonomy. Linear blend-
ing [1] uses goal achieving policies, and blend by utilizing goal
prediction confidence to smoothly switch between sources.

While blending is intuitive, Trautman [7] presents many
examples where user inputs and the autonomous policy are
reasonable in isolation, but their blended combination is
not. These examples demonstrate a key shortcoming of the
blending approach - the autonomous policy selects assistance
actions independent of user inputs.

In most existing systems, user inputs have been used to
predict the user’s goal and select the autonomous policy [1],
[4], [8], [10]. However, these systems do not reason about
user inputs in the autonomous policy itself. Additionally, these
predictors are generally learned from direct teleoperation,
without the shared autonomy system in place. Experiments,
on the other hand, suggest that users change their strategy
when assistance is present [9].

More recent work has proposed minimizing a user-robot
cost function [8], [9]. These frameworks take a step towards
optimizing for assistance actions while incorporating a user
model. However, current implementations do not incorporate
predictions of future user inputs into the policies.

Our aim is predict how users respond to assistance, and
utilize these predictions to select assistance actions. Intuitively,
if certain assistance actions cause users to fight the system, we
should predict that fight and penalize those actions. If other
actions cause users to achieve their goal while incurring lower
cost, we should prefer those actions.

We first review the cost minimization framework of Javdani
et al. [9] assuming we have a model of user behavior. We next
present a method for learning user behavior during assistance.
Finally, we discuss some ongoing computational challenges
for making this system practical.

II. ASSISTANCE ACTION SELECTION

We present our user-robot cost minimization framework for
a known goal. Note that we can extend this cost minimization
to an unknown goal by following Javdani et al. [9] and using
the QMDP method [11].

A. User-Robot Cost Minimization

Formally, let s ∈ S be the robot state (e.g. position,
velocity), and a ∈ A be the actions (e.g. velocity, torque).
We model the robot as a dynamical system with transition
function T : S×A→ S. The user supplies inputs u ∈ U via an
interface (e.g. joystick, mouse). These user inputs map to robot
actions through a known deterministic function D : U → A,
corresponding to the effect of direct teleoperation. We define
a trajectory ξt as a sequence of states, user inputs, and actions,
ξt = {s0, u0, a0, . . . , ut−1, at−1, st}.

We assume a known user-robot cost function C : S × U ×
A→ R. This cost function can be hand-tuned or learned, e.g.
through maximum entropy inverse optimal control (MaxEnt
IOC) [12]. Together, the tuple (S,U, T, Cu) defines a Markov
Decision Process (MDP).

Unlike standard MDP formulations, we cannot directly
optimize for actions, as we do not decide user inputs. In
order to find the optimal robot actions, we assume access to
a stochastic user policy πu(ξt) = p(ut|ξt), which provides a
distribution over user inputs given the entire history, including
the previous assistance actions. In Sec. III, we discuss how
we can learn this policy.



We similarly define the assistance policy πr(s) = p(a|s).
This allows us to define the value function, or expected cost-
to-go, given a user policy:

V π
u

πr (s0) =
∑
t

Est,ut,at [C(st, ut, at)]

st ∼ T (st−1, at−1)
ut ∼ πu(ξt)

at ∼ πr(st)

We denote the optimal value function as the expected cost-
to-go of the best policy, V π

u
(s) = minπr V π

u

πr (s).
Note that in prior work [9], this value function was approx-

imated by assuming the user would not supply more inputs:

V π
u

[9] (s0) = min
πr

∑
t

Est,at [C(st, 0, at)]

This assumption was made for computational purposes -
rolling out the user policy while selecting assistance actions is
computationally difficult. However, if we wish to incorporate
the user model into action selection - for example, to avoid
fighting the user - we must relax this assumption. We discuss
some potential approximations in Sec. IV.

III. LEARNING THE USER POLICY

Most shared autonomy works have focused on utilizing
predictors to infer a distribution over the user’s goal [1],
[4], [8], [10]. These methods learn a predictor during direct
teleoperation, and apply it during shared autonomy [1], [8]–
[10]. Implicitly, this assumes that users do not change their
behavior when assistance is provided. However, recent studies
suggest that users alter their behavior during assistance [9].

A. Incorporating User Adaptation
The way in which users respond to assistance actions

provides information about the effectiveness of those actions.
Intuitively, if the user fights certain assistance actions, we
should actively avoid those assistance actions. On the other
hand, if we can predict that some assistance actions will enable
users to achieve their goal with fewer inputs, and therefore less
cost, we should prefer those actions.

Learning a good model of user behavior during assistance
is our ongoing work. Intuitively, we believe that user behavior
during assistance will resemble that of direct teleoperation. Let
pme be a predictor of direct teleoperation behavior, e.g. learned
through maximum entropy inverse optimal control (MaxEnt
IOC) [12]. Our current approach employs the principle of
minimum cross-entropy [13], learning a predictor that matches
the observed data while minimizing the Kullback-Leibler di-
vergence (KL) to this prior distribution. This has the additional
benefit of leveraging existing work on user predictions.

Let fξu be some features of user input u and trajectory so
far ξ. Let f

ξ

u be the average feature observed in the data:

argmin
pkl

KL(pkl‖pme)

s.t.
∑
ξ∈Data

p(ξ)
∑
u

pkl(u|ξ)fξu = f
ξ

u

That is, the average feature of the data f
ξ

u should match the
expected feature predicted by our learned distribution pkl on
the trajectories observed in the data.

IV. ONGOING WORK

We presented our current formulation for predicting user ac-
tions as users adapt to shared autonomy assistance in Sec. III,
and how we might optimally use that prediction for selecting
new assistance actions in Sec. II. However, these methods as
presented are computationally intractable.

Ziebart et al. [14] have utilized predictions of user inputs
to compute optimal actions in an MDP in the discrete set-
ting. They use predictions to create and optimize over time-
dependent cost maps. We are currently exploring extensions
of this idea for the continuous setting. Another possibility is
to approximate by assuming a value function approximation
after a bounded number of steps, e.g.:

V π
u
(s0) ≈ min

πr

T∑
t

Est,ut,at [C(st, ut, at)] + Ṽ (sT )

Where Ṽ is some estimate of the cost-to-go, e.g. assuming the
robot will take over as in Javdani et al. [9].

Extending this framework to continuous action spaces
presents many additional challenges. We hope to follow meth-
ods recently presented for continuous action POMDPs [15].

REFERENCES

[1] A. Dragan and S. Srinivasa, “A policy blending formalism for shared
control,” IJRR, 2013.

[2] J. W. Crandall and M. A. Goodrich, “Characterizing efficiency on
human robot interaction: a case study of shared–control teleoperation,”
in IEEE/RSJ IROS, 2002.

[3] S. Park, R. D. Howe, and D. F. Torchiana, “Virtual fixtures for robotic
cardiac surgery,” in Med. Image. Comput. Comput. Assist. Interv., 2001.

[4] M. Li and A. M. Okamura, “Recognition of operator motions for real-
time assistance using virtual fixtures,” in HAPTICS, 2003.

[5] A. H. Fagg, M. Rosenstein, R. Platt, and R. A. Grupen, “Extracting user
intent in mixed initiative teleoperator control,” in Proceedings of the
American Institute of Aeronautics and Astronautics Intelligent Systems
Technical Conference, 2004.

[6] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a robot
manipulator using a vision-based human-robot interface,” IEEE Transa.
Ind. Electron., 2005.

[7] P. Trautman, “Assistive planning in complex, dynamic environments: a
probabilistic approach,” in HRI Workshop Hum. Rob. Team., 2015.

[8] K. K. Hauser, “Recognition, prediction, and planning for assisted
teleoperation of freeform tasks,” Auton. Robots, vol. 35, 2013.

[9] S. Javdani, S. Srinivasa, and J. A. D. Bagnell, “Shared autonomy via
hindsight optimization,” in RSS, 2015.

[10] H. Koppula and A. Saxena, “Anticipating human activities using object
affordances for reactive robotic response,” in RSS, 2013.

[11] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in ICML, 1995.

[12] B. D. Ziebart, A. Maas, J. A. D. Bagnell, and A. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008.

[13] J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy.” IEEE
Trans. Info. Theory, vol. 26, pp. 26–37, 1980.

[14] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. D.
Bagnell, M. Hebert, A. Dey, and S. Srinivasa, “Planning-based prediction
for pedestrians,” in IEEE/RSJ IROS, 2009.

[15] K. Seiler, H. Kurniawati, and S. Singh, “An online and approximate
solver for pomdps with continuous action space,” in IEEE ICRA, 2015.


	Introduction
	Assistance Action Selection
	User-Robot Cost Minimization

	Learning the User Policy
	Incorporating User Adaptation

	Ongoing Work
	References

