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Abstract

The paging problem is that of deciding which pages to keep in a memory of k pages
in order to minimize the number of page faults. We develop the partitioning algorithm,
a randomized on-line algorithm for the paging problem. We prove that its expected
cost on any sequence of requests is within a factor of Hk of optimum. [Hk is the kth
harmonic number, which is about In(A:). ) No on-line algorithm can perform better by
this measure. Our result improves by a factor of two the best previous algorithm.

1. Introduction

The paging problem arises when trying to control a two-level memory system. Such a
system has k pages of fast memory and n - k pages of slow memory. 'A sequence of
requests to pages is to be satisfied in their order of occurrence. In order to "satisfy a
request to a page, that page must be in fast memory. When a requested page is not in
fast memory, a page fault occurs, and a page must be moved from fast memory to slow
memory to make room for the new page to be put into fast memory. The paging problem
is that of deciding which page to eject from fast memory. The cost to be minimized is the
number of page faults.

Belady [l] gave a simple optimum algorithm for the paging problem. Belady's algorithm
ejects the page that will remain unused for the longest time. This algorithm is off-line,
using knowledge of future requests. An important class of paging algorithms are the on-
line algorithms. These algorithms are not allowed use information about the future to
process the pending request.
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Sleator and Tarjan [5] introduced the idea of comparing the performance of on-line pag-
ing algorithms with that of the off-line optimum. They showed that any on-line algorithm
for the paging problem will, on some sequence of requests, have cost k times that of the
optimum off-line algorithm.

A randomized paging algorithm is allowed to make use of a source of randomness when
deciding what to do. Fiat et al. [2] extended the work of Sleator and Tarjan to the domain
of randomized algorithms. To describe the results of that paper, it is useful to introduce
the terminology of randomized competitiveness from Manasse et al. [3]. A randomized
on-line algorithm is said to be c-competitive if on every sequence of requests its expected
cost is within a factor of c (plus a constant) of that of every other algorithm, including
those that are off-line. More formally, we let C'A(cr) be the expected cost incurred by an
algorithm A in processing a request sequence a. An algorithm B is c-competitive if there
exists a constant a such that for all algorithms A and all sequences cr,

C's((7) <C. CA(<7)+a.

The constant c is known as the competitive factor. An algorithm is said to be strongly
competitive if it has the smallest possible competitive factor.

The inarking algorithm of Fiat et al. [2] is a randomized algorithm for the paging
problem. This algorithm is Jf*-competitive iffc = n- 1 and 2^-competitive in general.
(Here Hk denotes the kth' harmonic number: ^ = 1+^+ i+---+ p) It is also shown
that Hk is the smallest possible competitive factor for the paging problem. These results
leave a gap of a factor of two between the lower bound on the competitive factor and
what is achieved by an algorithm. The main result of this paper is a new algorithm whose
competitive factor matches the lower bound, and is thus strongly competitive.

The paper has two main parts. The first part (Section 2) describes a way of maintaining
a dynamically changing partition of the set of pages. We show that the partitioning
procedure can be used to obtain a lower bound on the cost of any algorithm handling a
given sequence of requests. The second part (Section 3) describes a randomized algorithm
based on partitioning and analyzes its performance.

The paging problem is a special case of the k-server problem, the deterministic version
of which was studied in Manasse et al. [3, 4]. In this problem there is a set of n vertices
numbered 1, 2,... , n, and a distance measure among them satisfying the triangle inequality.
A collection of A; mobile servers reside on these vertices. Given a sequence of requests, each
of which specifies a vertex that requires service, the A-server problem is to decide how to
move the servers in response to each request. If a requested vertex is unoccupied, then some
server must be moved there. The requests must be satisfied in order of their occurrence
in the request sequence. The cost of handling a sequence of requests is equal to the total
distance moved by the servers.

In the uniform k-server problem, the cost of moving a server from any vertex to any
other is one. The paging problem is isomorphic to the uniform fc-senrer problem. The cor-



respondence between the two problems is as follows: the pages of address space correspond
!?- e_nrver?ices' and ,the ̂ a?es in fast memol'y correspond to those vertices occupied by
servers. In the remainder of this paper we shall use the terminology of the uniform fc-server
problem rather than that of the paging problem.

2. A Lower Bound on Optimal Cost

In this section we describe a dynamically changing labeled partition of the vertices. The
partition evolves deterministically as a function of the request sequence, and can be rnain^
tained by an on-line algorithm. We show how to use this partition to obtain a lower" bound
on the cost incurred by any algorithm in satisfying the request sequence.

The partition is actually an ordered sequence of disjoint sets of vertices
5a'5'a+l'--^-i''s'^ (some of which could be empty) whose union is the set {l, 2,... n]
Each set S, (except Sp) is labeled with an integer fc,. ' Initially a = l and 0~= ̂ '^'is the
set of verUces that are not initially covered by a server, S, is the set of vertices that" are^
and ki = 0. The numbers a and /? increase over time.

The labels are related to the cardinalities of the sets and satisfy the following set of
conditions, which we call the labeling invariant:

k^ = 0

k, > 0

k, = A;;_i + |5. | - 1
^-i = k-\Sp\

a <t < ,3

a<t < ,3

We will show that these conditions hold initially and that they are maintained as the
partition evolves.

We can now describe how the labeled partition is updated in response to a request at
a vertex v. Let i be such that v £ 5.. There are three cases:

Rule 1, »' = /?: Do nothing.



Rule 2, a<i < /3: First apply the following assignments:

5.
Sff
^

5. - {,;}
Sp U {v}
^-1 i<J<0

It might now be the case that some label is changed from one to zero.
If this happens, let j be the largest integer such that kj = 0. Now

apply the following two assignments:

S, ^- 5^U5^iU... U5, _iU5,
a ^ ]

Rule 3, i = a: Do the following assignments:

Sc.
s e+i

1c,
/?

5.
{v}
k-
/3+

.M

1

1

An easy induction shows that the labeling invariant remains satisfied after a request is
processed in this way.

The following table shows the labeled partitions generated for a particular sequence of
requests when n = 9 and k = 6. Each line shows the partition resulting after a request
to the underlined vertex in the previous partition, as well as the rule that was applied to
obtain the new partition. The leftmost set on a line is the current Sa and the rightmost
set is the current S^. Each set 5, (except Sp) is labeled with the appropriate A;,.

Initial Partition: {7, 8, 9}o {1, 2, 3, 4, 5, 6}
rule 3:

rule 2:

rule 3:

rule 2:
rule 2:

rule 2:

rule 2:

rule 2:

{7, 8}o {1, 2, 3, 4, 5, 6}s {9}
{7, 8}o {1, 2, 3, 4, 5}4 {9, 6}
{7}o {1, 2, 3, 4, 5}4 {9, 6}s {8}
{7}o {2, 3, 4, 5}s {9, 6)4 {8, 1}
{7}o {2, 3, 4, 5}s {6}s {8, 1, 9}
{7}o {2, 3, 4, 5}3 {}2 {8, 1, 9, 6}
{7}o {2, 4, 5}2 {}i {8, 1, 9, 6, 3}
{7, 2, 4}o {8, 1, 9, 6, 3, 5}

The partitioning procedure is significant because it permits an on-line algorithm to
track the performance of an optimal off-line algorithm. The optimal off-line algorithm,



which we shall call OPT, was discovered by Belady [l]. This algorithm can be described
as follows:

OPT: For each request to an uncovered vertex, move a server from the covered
vertex for which the next request is farthest in the future. If two or more
covered vertices are never requested again, move from the one with the higher
number.

For completeness we now prove that OPT is optimal for any request sequence a. Sup-
pose A is an algorithm that starts in the same state as OPT, and makes the same moves as
OPT for the first t requests of a. We now show how A can be modified, without increasing
its cost, so that it also makes the same moves as OPT on the (i + l)st request.

Suppose the request is at v, that OPT moves the server on w to v, and A moves a server
on 3; to v. Define algorithm A' as follows: On the (z + l)st request, A' moves the server
on wtov. A' now mimics the moves of A exactly until one of two things happens: (l) A
moves its server on w to another vertex u. Then A' moves the server on x to u, and A and
A' are in the same state and have incurred the same cost. (2) There is a request at z, and
A moves from u to x. Then A' moves from u to w. Algorithms A and A' are again in the
same state, and the cost incurred by A' is at most that incurred by A. By the definition of
OPT, we know that there must be a request to x before any request to w. This guarantees
that A' is well defined and costs no more than A. By repeatedly modifying algorithm A in
this manner, it can be transformed, without increasing its cost, into OPT. It follows that
no algorithm A can handle a more cheaply than OPT.

To streamline further discussion, we introduce some notation. Let

5;=5'<, u5^iU... u5, _iU6'...

After processing <7(1), <r(2),..., a(t) the algorithm OPT covers a particular set of vertices.
This set can be computed using the partition and the remainder of the request sequence
a(t+l), a(t+2),..., as follows:

1. S ^ Sff.

2. Sort the vertices in S^ in order of earliest occurrence in a{t + 1) . ... That is, if
a vertex v occurs in a((+l)... before another vertex w, then v comes before w in
the sorted list. All vertices requested in a((+l)... come before all those that are
not, and two vertices not requested are ordered by vertex number, lowest first.

3. Repeat the following step for each vertex v in the order defined in step 2, until S
contains k vertices: Add v to S unless it would force S to contain more than A,
vertices from any set 5,*.

Lemma 1 At any point in the processing of a request sequence a, the set S of vertices
obtained by this procedure is the same as the set of vertices covered by OPT.



Proof. The proof is by induction on the request sequence. The lemma clearly holds before
the first request. Suppose the lemma is true after the first t requests of a. We claim it
holds after ( + 1 requests. If the next request is for a vertex in S^, then OPT does not
make a move, and the partition does not change. Since the new request was in S^, the
ordering of the vertices in 5^_i does not change, and so 5 does not change.

If the next request is for a vertex v in 5a, then by the induction hypothesis, OPT is
not covering v, and it moves the vertex requested farthest in the future. Rule 2 is applied
to update the partition, i. e. /3 is incremented and v becomes the sole vertex in the new
Sp. This also causes v to be added to S. Because S can only contain k - 1 vertices from
the new S^_^ the new S is the same as the old 5 except that the vertex farthest in the
future is dropped.

Now suppose that the next request is for a vertex v in 5, (a< i < /3). It must be the
case that \Sp\ < k, so the set S contains at least one vertex from Sp_^. Vertex v is first in
the sorted list of vertices from 5,*, so it must be in S. By the induction hypothesis, OPT
is already covering S and does not move. We must show that S does not change.

Before the partition is updated, S contains at most kj vertices from each 5;. This

means that S contains v and at most kj - 1 other vertices from 5,* when i <j < ,3-1.

When Rule 3 is applied to update the partition, v is moved from' S^_^ to Sp, and k, is
decremented for all j from t to ̂  - 1. The decremented bounds offset the fact that v is no
longer in S^ for any j < (3. The net effect is that S does not change. D

Using this lemma, we can obtain a lower bound on the cost of any paging algorithm.
Let D(a) denote the number of times a vertex in set Sa is requested during the processing
of request sequence a.

Theorein 1 For any algorithm A and request sequence a,

CA^) > D(a).

Proof. Because OPT is optimal, the cost of algorithm A is no less than the cost of OPT.
Lemma 1 characterized precisely the set of vertices covered by OPT. This set never includes
any vertices in Sa, so OPT incurs a cost of one whenever such a vertex is requested. (The
cost of OPT actually equals D(a), because OPT has no other costs.) D

3. An On-Line Algorithm

We can now describe the partitioning algorithm, a randomized ̂ -competitive algorithm
for the uniform A-serv-er problem. It works by maintaining the labeled vertex partition
described above, augmented with a system of marks. There will be one kind of mark
(called an i-mark) for each set 5;, a < t< /3. There are fc, i-marks, which occupy distinct



vertices of 5';. These marks are only allowed on vertices in S, or on vertices having an
(t - l)-mark. The algorithm keeps a server on each vertex of Sp and on each vertex with
a (/? - l)-mark.

Given a labeled partition, call a vertex v i-eligible if it is in 5, or if it has an [i - 1).
mark. Only t-eligible vertices may have an t'-mark. By the labeling invariant there are
exactly k, + 1 t'-eligible vertices. We shall show later that any valid arrangement of marks
is equally likely to be chosen by the partitioning algorithm.

we can ?ow describe how the partitioning algorithm updates the marking. Initially
Q: = 1 and /? = 2 and there are no marks of any kind.

When a request arrives for a vertex in S^ nothing happens to the partition, marks, or
servers.

When a request arrives for a vertex v in 5., a<i < /3, before applying Rule 2, we move
marks around so that there is a j-mark on v for all j satisfying t ^ j < /?. This mark
movement is done by repeating the following step for each j starting at t and ending at

If v has a j'-mark then do nothing. Otherwise randomly choose some vertex w
that has a j-mark. Transfer each ̂ -mark (where / > j) from w to v.

When Rule 2 is applied, v ends up in S^, and all the marks on v are erased. If a changes,
all i-marks (z ̂  a) are deleted. There are now the right number of marks of each type
confined to the right places. Recall that each (/3 - l)-mark corresponds to a server. 'If a
(/? - 1)-mark is moved to v from some vertex, a server is also moved from the same vertex.

When a request arrives for a vertex v in S^, we apply update Rule 3. We then create
k-1 new (/3- l)-marks and distribute them randomly among the k (/3- l)-eligible vertices.
These eligible vertices are exactly those covered by a server before the request. The one
of these that is chosen not to have a (/? - 1)-mark is the vertex from which the server is
moved.

The number of diflferent valid arrangements of marks is Y[»<i<p{k, + 1), because there
are exactly (fc, + 1) ways to place the i-marks. The following lemma shows that while
running the partitioning algorithm, each valid arrangement of marks is equally likely.

Leinma 2

of marks.
The partitioning algorithm is equally likely to produce each valid arrangement

Proof. We shall prove the lemma inductively. Clearly it is true initially, when there are no
marks or eligible vertices. Now suppose the assertion is true before a request to a vertex
v. The remainder of the proof shows that the leinma remains true after the request to v
is processed.



If v £ Sp, nothing happens to the partition or the marks, so the lemma remains true.

If v 6 5'a, Rule 3 is applied and /3 is incremented. No i-marks are moved for any
1 </?-!, so the distribution of these marks is unchanged. The algorithm introduces A;^_i
new (/3 - l)-marks, randomly placed on the fc^_i + 1 eligible vertices.

This leaves the case where v   5', and a< i < /3. In this case the j-marks, where
a < j < i, are not changed by the partitioning algorithm, so their distribution remains the
same. For the j-marks with j > t, the situation is more complex. The action of this step
of the partitioning algorithm can be broken into two parts. The first part loads vertex v
with j-marks for all j > i. The second part moves v into Sp and removes all of the marks
on v. We claim that after the first part of the process, the arrangement of inarks is equally
likely to be any valid arrangement that obeys the additional constraint that vertex v has
a j-mark for all j > i. It immediately follows that the induction hypothesis is maintained
after the second part of the step.

It remains to prove our claim. Call an arrangement of marks (t', y, v)-constrained if it
is a valid arrangement of marks and if vertex v has marks of types {l\i <l < j}. (It
may have other marks as well. ) The initial arrangement of marks is equally likely to be
any arrangement that is (1, 1 - l, i;)-constrained. It is easy to verify that the jth step of
the mark-moving process transforms a random (i, j - l, v)-constrained arrangement into
a random (t', j, v)-constrained arrangement. An induction on j proves our claim. D

We use Lemma 2 to prove the following lemma, which bounds the probability that a
server moves on a request that invokes Rule 2.

Lemma 3 While processing a request for vertex v   S',, where a< i < (3, the probability
that the partitioning algorithm moves a server is at most

J_.
i<j<0 "3

Proof. Recall that the mark-moving procedure works by iterating over levels from i up to
(3-1. For each level, the iteration step ensures that v receives an t'-mark. Eventually
v receives a (/3 - l)-mark, which corresponds to a server. The probability that a server
moves is bounded above by the expected number of iterations on which marks move. The
probability that a move occurs on step j equals the probability that v still has no j-mark
after the (j - 1)" step. As shown in Lemma 2, the jtk step begins in a random (t, j - 1, v)-
constrained arrangement. In this arrangement, the probability that v has no j-mark is
l/(A;y + 1). This is the probability that a move occiirs on the jth step. Summing of over
all j, we obtain the desired bound. Q

Theorem 2 The partitioning algorithm is an H^-competitive algorithm for the uniform
k-server problem.



Proof. We shall prove this theorem using the following potential function:

^= E  .+x-i).
a<, i<0

This function is initially zero and is always non-negative. We shall prove by induction (on
the length of o-) the following potential invariant:

C'PAM+$ < Hk-D(a).

HereC'pA(^) is the expected cost incurred by the partitioning algorithm on a sequence a,
and D(a) (as in Theorem 1) is the number of occurrences in a of requests to vertices in
^^. Theorem 1 in conjunction with the potential invariant proves the theorem. It remains
to prove this invariant by induction.

The invariant is clearly true initially, because all quantities are zero. We shall show
that if it holds before a request to v, then it holds after it. As usual, there are three cases
to consider.

If v   S^, then none of the three terms change, and the inequality remains true.

If v   S,, a <i < /3, then the right side of the potential invariant does not change.
We shall show that the left side does not increase. The expected cost of this request to
the partitioning algorithm is just the expected number of servers moved. A bound on this
quantity is given in Lemma 3:

expected cost of the request to PA < ^
t<J<0 k3 + 1

The potential function also changes as a result of an application of Rule 2. We can write
this change as a function of the values of the labels before and after Rule 2 is applied. The
primed symbols represent the values after the update rule, and the unprime'd represent
those before the update.

^ = E, (^.. i-i) - E (^. 1-1)
//^ - ^- d ' ^ .a'<J<^ ' Ct<j<0

< E, (^i-i) - E (^. 1-1)L^l
a'<}<0 Ot<]<0

= Ej , -i)- ,+i-i)]
«<J<<9

= .<ZJ --1)-W-+.JTT
= - E -

. <7<(8 kl + 1

-1)

This cancels the expected cost of the request, and finishes the case.



The final case to consider is when v e 5a. In this case the right side of the potential
invariant increases by Hk, and the expected cost incurred by the partitioning algorithm is
Just one. To verify the invariant we have to show that the potential increases by at most
Hk-1. The change in the potential is in fact exactly Hk-l. This is because Rule 3 does
not change any fc/s, but it adds a new kp, whose value is k - 1. The added term in the
potential is Hk^+i - 1= Hk-1. Q
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