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ABSTRACT

Developing robots with social skills and understanding is a
critical step towards enabling them to cooperate with people
as capable partners, to communicate with people intuitively,
and to learn quickly and effectively from natural human
instruction. These abilities would enable many new and
exciting applications for robots that require them to play a
long-term, supportive, and helpful role in people’s daily
lives. This paper describes our work towards building
sociable autonomous robots that can work in collaboration
with people. Our approach puts an emphasis on task dialog
and social communication under the theoretical framework
of joint intention theory.

INTRODUCTION

Many of the most useful and new applications for
autonomous robots require them to work alongside people
as capable, cooperative, and socially savvy partners. For
instance, robots are being developed to provide the elderly
with assistance in their homes. Such a robot should be
persuasive in ways that are sensitive to the person, like
reminding them when to take medication, without being
annoying or upsetting. In other applications, robots are
being developed to serve as members of human-robot
teams. NASA JSC’s Robonaut is a great example [1]. This
humanoid robot is envisioned to work shoulder-to-shoulder
with astronauts assisting them in space station maintenance
operations.

To provide a human teammate with the right assistance at
the right time, a robot partner must not only recognize what
the person is doing (i.e., his observable actions) but also
understand the intentions or goals being enacted. This style
of human-robot cooperation strongly motivates the
development of robots that can infer and reason about the
mental states of others within the context of the interaction
they share.
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For applications where robots interact with people as
partners, it is important to distinguish human-robot
collaboration from other forms of human-robot interaction
(HRI). Namely, whereas interaction entails acting on
someone or something else, collaboration is inherently
working with others [2,3].

Much of the current work in human-robot interaction is thus
aptly labeled given that the robot (or team of robots) is
often viewed as an intelligent tool capable of some
autonomy that a human operator commands (perhaps using
speech or gesture as a natural interface) to perform a task
[4,5]. This sort of master-slave arrangement does not
capture the sense of partnership that we mean when we
speak of working “jointly with” others as in the case of
collaboration.

Human robot collaboration has been studied using
autonomous vision-based robotic arms [6] and teleoperated
humanoids, such as NASA JSC’s Robonaut. In other
teleoperation work, the notion of partnership has been
considered in the form of collaborative control (e.g. [7]),
allowing a robot to ask a human for help in resolving
perceptual ambiguities. In this approach, the human is used
by the robot as a source of information rather than as a peer.
In our work, the robot is autonomous and works with the
human as a peer and a member of a collocated team to
accomplish a shared task.

True human-robot collaboration is thus a relatively
unexplored kind of human-robot interaction. This paper
describes how we apply our theoretical framework (based
on joint intention theory) to enable an expressive humanoid
robot, Leonardo, to work shoulder-to-shoulder with a
human teammate towards accomplishing a joint task. To
this end, “Leo” uses collaborative discourse, gesture, and
accompanying social cues. Leo is shown in Figure 1(a).

JOINT INTENTION THEORY

What characteristics must a robot have to work effectively
with its human collaborator? To answer this, we look to
insights provided by Joint Intention Theory [8]. According
to this framework, joint action is conceptualized as doing
something together as a team where the teammates share
the same goal and a common plan of execution. This
collaborative plan does not reduce to the sum of the
individual plans [3], but consists of an interplay of actions
inspired and affected by a joint intention.



Several models have been proposed to explain how joint
intention relates to individual intention. Searle [9] argues
that collective intentions (“We-intentions”) are not
reducible to individual intentions of the agents involved (“/-
intentions”), and that the individual acts exist solely in their
role as part of the common goal. Bratman's analysis of
Shared Cooperative Activity (SCA) [2] introduces the idea
of meshing singular sub-plans into a joint activity. We
generalize this concept to the idea of dynamically meshing
sub-plans.

Bratman also defines certain prerequisites for an activity to
be considered shared and cooperative; he stresses the
importance of mutual responsiveness, commitment to the
Jjoint activity and commitment to mutual support. Cohen and
his collaborators [8] support these guidelines and provide
the notion of joint stepwise execution. Their theory also
predicts that an efficient and robust collaboration scheme in
a changing environment commands an open channel of
communication. Sharing information through
communication acts is critical given that each teammate
often has only partial knowledge relevant to solving the
problem, different capabilities, and possibly diverging
beliefs about the state of the task.

Our work integrates these ideas to model and perform
collaborative tasks.

MODELLING COLLABORATIVE TASKS

Humans are biased to use an intention-based psychology to
interpret an agent's actions [10]. Moreover, it has repeatedly
been shown that we interpret intentions and actions based
on goals, not specific activities or motion trajectories (e.g.
[11]). A goal-centric view is particularly crucial in a
collaborative task setting, in which goals provide a common
ground for communication and interaction.

All of this argues that goals and a commitment to their
successful completion must be central to our intentional
representation of tasks, especially if those should be
performed in collaboration with others.

Intention and Task Representation

We represent tasks and their constituent actions in terms of
action tuples [12] with the additional notion of goals. These
goals play a central role both in the precondition that
triggers the execution of a given action tuple, and in the
until-condition that signals when the action tuple has
successfully completed.

Our task representation currently distinguishes between two
types of goals: (a) state-change goals that represent a
change in the world, and (b) just-do-it goals that need to be
executed regardless of their impact on the world. These two
types of goals differ in both their evaluation as
preconditions and in their evaluation as until-conditions.
As part of a precondition, a state-change goal must be
evaluated before doing the action to determine if the action
is needed. As an until-condition, the robot shows

commitment towards a state-change goal by executing the
action, repeatedly if necessary, until the robot succeeds in
bringing about the new state. This commitment is an
important aspect of intentional behavior [2,8]. Conversely,
a just-do-it goal will lead to an action regardless of the
world state, and will only be performed once.

Tasks are represented as a hierarchical structure of actions
and sub-tasks (recursively defined in the same fashion).
Since tasks, sub-tasks, and actions are derived from the
same action tuple data structure, a tree structure is naturally
afforded. It should be noted that goals are also associated
with the successful completion of an overall task or sub-
task, separate from the goals of each of the task’s
constituents.

Intention and Decision-Making

When executing a task, goals as preconditions and until-
conditions of actions or sub-tasks manage the flow of
decision-making throughout the task execution process.
Additionally, overall task goals are evaluated separately
from their constituent action goals. This top-level
evaluation approach is not only more efficient than having
to poll each of the constituent action goals, but is also
conceptually in line with a goal-oriented hierarchical
architecture. For example, consider a task with two actions.
The first action makes some change in the world (and has a
state-change goal), and the second action reverses that
change (also a state-change goal). The overall task goal has
no net state change and becomes a just-do-it goal even
though its constituent actions both have state-change goals.

Task manager

The task manager module maintains a collection of known
task models and their associated names. Given this set of
tasks, the robot listens for speech input that indicates a task-
related request from the human partner. These can be in the
form of: “Leo, do task x” or “Leo, let’s do task x.” These
requests can also be made in the form of a question: “Leo,
can you do fask x?” In the case of a question, given
Leonardo has no speech generating capabilities yet, the
robot will answer by either nodding “yes” or shaking its
head “no.” If the robot does not recognize the name of the
requested task, or if the robot does not know how to
perform it, he looks puzzled or shrugs his shoulders “I don’t
know.”

The task manager distinguishes between requests for
autonomous task completion and invitations to task
collaboration, and starts the appropriate execution module.
If Leo is asked to do a known task on his own, then the task
manager executes it autonomously by expanding the task’s
actions and sub-tasks onto a focus stack (in a similar way to
[13]). The task manager proceeds to work through the
actions on the stack popping them as they are done and,
upon encountering a sub-task, pushing its constituent
actions onto the stack. The robot thus progresses through
the task tree until the task's goals are achieved.



Figure 1: (a) Leonardo participating in a collaborative button-
pressing task. (b) Leonardo negotiating his turn for an action
he is able to perform.

The major contribution of this work, however, concerns the
collaborative scenario: if a collaborative task execution is
requested, the task manager starts the collaboration module
to jointly execute a common plan.

PERFORMING TASKS WITH HUMANS

When collaborating with a human partner, many new
considerations come into play. For instance, within a
collaborative setting the task can (and should) be divided
between the participants; the partner’s actions need to be
taken into account when deciding what to do next; mutual
support must be provided in cases of one participant’s
inability to perform an action; and a clear channel of
communication must be used to establish mutual beliefs and
maintain common ground for intentions and actions.

Our implementation supports these considerations as
Leonardo participates in a collaborative discourse while
progressing towards achieving the joint goal. To do so, and
to make the collaboration a natural human interaction, we
have implemented a number of mechanisms that people use
when they collaborate. In particular, we have focused on
communication acts to support joint activity (utilizing
gestures and facial expressions), dynamic meshing of sub-
plans and turn taking.

Experimental Setup

In our experimental scenario there are three buttons in front
of Leonardo. The buttons can be switched ON and OFF
(which lights the button up). Occasionally, a button that is
pressed does not light up, and in our tasks this is considered
a failed attempt. We use tasks comprised of vision and
speech recognition and simple manipulation skills. For
instance, Leonardo can learn the names of each of the
buttons and is able to point to and press the buttons.

To test our collaborative task execution implementation, we
designed a set of tasks involving a number of sequenced
steps, such as turning a set of buttons ON and then OFF,
turning a button ON as a sub-task of turning all the buttons
ON, turning single buttons ON and other tasks. This task
set represents simple and complex hierarchies and contains
tasks with both state-change and just-do-it goals.

Dynamic Meshing of Sub-plans

Leo's intention system is a joint-intention model that
dynamically assigns tasks between the members of the
collaboration team. Leo derives his /-intentions based on a
dynamic meshing of sub-plans according to his own actions
and abilities, the actions of the human partner, Leo’s
understanding of the common goal of the team, and his
assessment of the current task state.

Leonardo is able to communicate with the human teammate
about the commencement and completion of task steps
within a turn-taking interaction. Specifically, the robot is
able to recognize changes in the task environment, as well
as successes and failures on both Leo’s and his teammate's
side. Moreover, Leonardo is able to communicate to the
human teammate his inability to accomplish a task step
crucial to the complete joint action.

Self Assessment and Mutual Support

At every stage of the interaction, either the human should
do her part in the task or Leo should do his. Before
attempting an element of the task, Leo negotiates who
should complete it. To accomplish this, Leo has the ability
to evaluate his own capabilities. In the context of the
button task, Leonardo can assess whether he can reach each
button or not. If he is able to complete the task element
(e.g., press a particular button) he will offer to do so.
Conversely, whenever he believes that he cannot do the
action (e.g., because he cannot reach the button) he will ask
the human for help.

Since Leonardo does not have speaking capabilities, he
indicates his willingness to perform an action by pointing to
himself, and adopting an alert posture and facial expression
(Figure 1(b)). Similarly, when detecting an inability to
perform an action assigned to him, Leo’s expression
displays helplessness, as he gestures toward the human in a
request for her to perform the intended action. Leo also
shifts gaze between the problematic button and his partner
to direct her attention to what it is he needs help with.

Communication to Support Joint Activity

While usually conforming to this turn-taking approach, the
robot can also keep track of simultaneous actions, in which
the human performs an action while Leo is working on
another part of the task. If this is the case, Leonardo will
take the human’s contribution into account and reevaluate
the goal state of the current task focus. He then might
decide to no longer keep this part of the task on his list of
things to do. However, the robot needs to communicate this
knowledge to the human to maintain mutual belief about
the overall task state.

We have implemented a variety of gestures and other social
cues to allow the robot communicate his internal state
during collaboration — such as who the robot thinks is doing
an action, or whether the robot believes the goal has been
met. For instance, when the human partner unexpectedly
changes the state of the world, Leo acknowledges this



change by glancing briefly towards the area of change
before redirecting his gaze to the human. This post-action
glance lets the human know that the robot is aware of what
she has done, even if it does not advance the task.

If the human’s simultaneous action meets a task goal, such
as turning the last button ON during the buttons-ON task,
Leo will glance at the change and give a small confirming
nod to the human. Similarly, Leo uses subtle nods when he
thinks he completed a task or sub-task. For instance, Leo
will give an acknowledgement nod to the human after
completing the buttons-ON sub-task and before starting the
buttons-OFF sub-task, in the case of the buttons-ON-then-
OFF task.

These cues play a crucial role in establishing and
maintaining mutual beliefs between the teammates on the
progress of the shared plan.

RESULTS AND FUTURE WORK

In summary, during the trials for the collaborative button
task, Leonardo displayed successful meshing of sub-plans
based on the dynamic state changes as a result of his
successes, failures, and the partner’s actions. Leo’s gestures
and facial expressions provided a natural collaborative
environment, informing the human partner of Leo's
understanding of the task state and his attempts to take or
relinquish his turn. Leo's requests for help displayed his
understanding of his own limitations, and his use of gaze
and posture served as natural cues for the human to take
appropriate action in each case. See Appendix A for a
transcript of a typical collaborative interaction.

As future work, we would like to improve the complexity
of the task representation as well as the interaction and
dialog. Leonardo can understand a few spoken requests of
the human, but he does not speak himself. Although his
gestures and facial expressions are designed to
communicate his internal state, combining this with an
ability to speak would give the robot more precision in the
information that he can convey. We would also like to
implement a richer set of conversational policies to support
collaboration. This would be useful for negotiating the
meshing of sub-plans during task execution to make this
process more flexible and efficient. We continue to make
improvements to Leonardo’s task representation so that he
can represent a larger class of collaborative tasks and more
involved constraints between the tasks’ action components.

CONCLUSION

Building sociable robots has profound implications for how
we will be able to engage robots in the future — far beyond
making them appealing, entertaining, or providing an easy
interface to their operation. It is a critical competence that
will allow robots to assist us as capable partners.

This paper presents an overview of our work to build
sociable robots that work cooperatively with people using
natural dialog, gesture, and social cues. We have presented
how our ideas, informed by joint intention theory, can be

applied to building and demonstrating robots that engage in
self-assessment and provide mutual support, communicate
to support joint activity, perform dynamic meshing of sub-
plans, and negotiate task division via turn taking.
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Human

Leonardo

Notes

“Leo, let’s do task BUTTONS”

Shrugs “I don’t know”

Leo does not know this task.

Leo acknowledges that he understands the task,

2 “Let’s do task BUTTON-ONE” Looks at the buttons and visibly establishes mutual belief on the
task’s initial conditions.
3 Points to himself He can do the flrst (and only) part of the task,
and suggests doing so.
« » . . Looking away from the partner while operating
4 K . . :
OK, you go Presses button one, looking at it establishes turn taking boundaries.
5 Looks back at his partner Gaze shift is used to signal end of turn
6 Nods shortly Communicates the robot’s perceived end of task
7 “Leo, let’s do task BUTTON- | Looks at the buttons; points to As in steps 2-3
ONE” himself p
8 “I"’ll go “ Looks at his partner
9 Presses button one Looks at button one bAecllferl‘owledges partner’s action, creates mutual
10 Nods shortly Communicates perceived end of task.
1 Moves button one out of Leo’s
reach
Leo acknowledges that he understands the task,
12 “Let us do task BUTTON-ONE” Looks at buttons and visibly establishes mutual belief on the
task’s initial conditions.
Looks at button one, then back . e
Leo assesses his capabilities and consequently
13 at the human partner; extends requests SUpport
his arms in “Help me” gesture. q pport.
14 Presses button one Looks at button one; looks back | Glance acknowledges partner’s action; nod
at human; nods shortly. creates mutual belief as to the task’s completion.
“Let us do task BUTTON-ONE- Leo aqkpowledges Fhat he understan@s the task,
15 i Looks at buttons and visibly establishes mutual belief on the
AND-TWO ,VISID D,
task’s initial conditions
16 Points to himself Hg can do the first part of the task, and suggests
doing so.
17 “OK, you go” Presses button one, looking at it
At the same time as 17, presses
18
button two
19 Looks at button two; looks back | Acknowledges partner’s simultaneous action;

at the human; nods shortly

creates mutual belief as to the task’s completion.

APPENDIX A — TASK COLLABORATION TRANSCRIPT

Table 1 shows a sample transcript describing a typical
interaction task collaboration between Leonardo and a
human teammate. We chose to display the following
simple, non-hierarchical tasks for reasons of transcript

Table 1: Sample task collaboration on single-level tasks.

paper.

brevity: BUTTON-ONE — Toggle button one, BUTTON-
ONE-AND-TWO — Turn buttons one and two ON.

While these do not illustrate the Leonardo’s full range of
goal-oriented task representation capabilities, they offer a
sense of the joint intention and communicative skills
fundamental to the collaborative discourse stressed in this




