

USARSim

A Game-based Simulation of
the NIST Reference Arenas

Prepared by Jijun Wang

 ii

USARSim

Contents
1 Introduction ...1

1.1. Background..1
1.2. What is USARSim...1

2. System Overview...2
2.1. System architecture..2

2.1.1. Unreal engine...3
2.1.2. Gamebots...3
2.1.3. Controller (Pyro)..3

2.2. Simulator components...4
2.2.1. Environment simulation ..4
2.2.2. Sensor simulation ..7
2.2.3. Robot simulation..8

3. Installation ...8
3.1. Requirements...8
3.2. Install UT2003 and the patch...8

3.2.1. Windows..8
3.2.2. Linux..9

3.3. Install USARSim...9
3.4. Install the controller (Pyro)..9

3.4.1. Windows..9
3.4.2. Linux..10

4. Run the simulator...10
4.1. How to run the simulator ...10
4.2. Examples ...11

4.2.1. The testing control interface..11
4.2.2. Pyro..12

5. Communication & Control (Messages and commands)..12
5.1. TCP/IP socket ..13
5.2. The protocol...13
5.3. Messages..13
5.4. Commands...15

6. Sensors...17
6.1. State sensor ..17

6.1.1. How the sensor works..17
6.1.2. How to configure it..17

6.2. Sonar sensor...17
6.2.1. How the sensor works..17
6.2.2. How to configure it..18

6.3. Laser sensor ...18
6.3.1. How the sensor works..18
6.3.2. How to configure it..18

 iii

6.4. Sound sensor..19
6.4.1. How the sensor works..19
6.4.2. How to configure it..19

6.5. Human-motion sensor..20
6.5.1. How the sensor works..20
6.5.2. How to configure it..20

7. Robots..21
7.1. P2AT..21

7.1.1. Introduction ...21
7.1.2. Configure it..22

7.2. P2DX ...22
7.2.1. Introduction ...22
7.2.2. Configure it..23

7.3. RER ...23
7.3.1. Introduction ...23
7.3.2. Configure it..24

7.4. Corky ...24
7.4.1. Introduction ...24
7.4.2. Configure it..24

7.5. Four-wheeled Car ..25
7.5.1. Introduction ...25
7.5.2. Configure it..25

8. Controller – Pyro ...26
8.1. Simulator and world ..26
8.2. Robots..26
8.3. Services..27
8.4. Brains...28

9. Advanced User ..28
9.1. Build your arena..29

9.1.1. Geometric model ...29
9.1.2. Special effects..30
9.1.3. Obstacles and Victims...30

9.2. Build your sensor...32
9.2.1. Overview ...33
9.2.2. Sensor Class...33
9.2.3. Writing your own sensor ...34

9.3. Build your robot...34
9.3.1. Step1: Build geometric model ...34
9.3.2. Step2: Construct the robot ...34
9.3.3. Step3: Customize the robot (Optional)..39

9.4. Build your controller ...41
10. Bug report ..41
11. Acknowledgement ...41

 1

1 Introduction

1.1 Background

Large-scale coordination tasks in hazardous, uncertain, and time stressed environments
are becoming increasingly important for fire, rescue, and military operations. Substituting
robots for people in the most dangerous activities could greatly reduce the risk to human
life. Because such emergencies are relatively rare and demand full focus on the
immediate problems there is little opportunity to insert and experiment with robots. .

1.2 What is USARSim

USARSim is a high fidelity simulation of urban search and rescue (USAR) robots and
environments intended as a research tool for the study of human-robot interaction (HRI)
and multirobot coordination. USARSim is designed as a simulation companion to the
National Institute of Standards’ (NIST) Reference Test Facility for Autonomous Mobile
Robots for Urban Search and Rescue (Jacoff, et al. 2001). The NIST USAR Test Facility
is a standardized disaster environment consisting of three scenarios: Yellow, Orange, and
Red physical arenas of progressing difficulty. The USAR task focuses on robot
behaviors, and physical interaction with standardized but disorderly rubble filled
environments. USARSim supports HRI by accurately rendering user interface elements
(particularly camera video), accurately representing robot automation and behavior, and
accurately representing the remote environment that links the operator’s awareness with
the robot’s behaviors.

High fidelity at low cost is made possible by building the simulation on top of a game
engine. By offloading the most difficult aspects of simulation to a high volume
commercial platform which provides superior visual rendering and physical modeling our
full effort can be devoted to the robotics-specific tasks of modeling platforms, control
systems, sensors, interface tools and environments. These tasks are in turn, accelerated by
the advanced editing and development tools integrated with the game engine leading to a
virtuous spiral in which a widening range of platforms can be modeled with greater
fidelity in less time.

The current pre-Beta release of the simulation consists of: environmental models
(levels) of the NIST Yellow, Orange, and Red Arenas as well as a partially textured
version of the Nike Silo reference environment, robot models of commercial and
experimental robots, and sensor models. As a simulation user, you are expected to
supply the user interfaces and automation and coordination logic you wish to test. For
debugging and development “Unreal spectators” can be used to provide egocentric
(attached to the robot) or exocentric (third person) views of the simulation. A test control
interface is provided for controlling robots manually. Robot control programs can be
written using the GameBot interface or Pyro middleware. A collection of interface
components such as an adjustable frame rate/FOV video window, support for a wider
range of commercial robots, and support for “approximately native” , Pyro, and Player
control interfaces are planned for future releases.

 2

2 System Overview

2.1 System architecture

Unreal Engine

Map Models (Robots model, Sensor
model, victim model etc.)

Gamebots

Network

Control
Interface

Unreal Client
(Attached spectator)

Middle Level
Control

High Level
Control

Controller

Video Feedback

Controller

Unreal Client
(Attached spectator)

Video Feedback

……

Team Cooperation

Unreal Data

Control Data

Control
Interface

Middle Level
Control

High Level
Control

Figure 1 System Architecture

The system architecture is showed in figure 1. Below the dashed boxes is the simulator that provides
interactive virtual environment for the users. The dashed box is the user side where you can use the
simulator to do your research. The system uses client/server architecture. Above the network icon in figure

 3

1, is the client side. It includes the Unreal client and the controller or the user side applications. Unreal
client renders the simulated environment. In the Unreal client, through changing the viewpoint, we can get
the view of the robots in the environment. All the clients exchange data with the server through the
network. The server side is called Unreal server. It includes Unreal engine, Gamebots, map and the models,
such as robots model, victims model etc.. Unreal server maintains the states of all the objects on the
simulator, responds to the data from the clients by changing the objects’ states and send back data to both
Unreal clients and the user side controllers.

In summary, the three main components that construct the system are 1) the Unreal engine that makes the
role of server, 2) the Gamebots that communicates between the server and the client and 3) Control client
that controls the robots on the simulator.

2.1.1 Unreal engine
The Unreal engine used in the simulator is released by Epic Games

(http://www.epicgames.com/) with Unreal Tournament 2003
(http://www.unrealtournament2003.com/). It’s a multiplayer combat-oriented
first-person shooter for the Windows, Linux and Macintosh platforms. In addition
to the amazing 3D graphics provided by the physics engine, which is known as
Karma engine, which is also included in Unreal to obtain high quality reality.
Unreal engine also provides a script language, Unreal Script, to the game
developers to develop their own games. With the scripts, developers can create
their objects (we call them actors) in the game and control these actor’s behaviors.
Unreal Editor is the 3D authoring tool comes with the Unreal engine to help
developers build their own map, geometric meshes, terrain etc. For more
information about Unreal engine, please visit the Unreal Technology page:
http://unreal.epicgames.com/.

2.1.2 Gamebots
The communication protocol used by Unreal engine is proprietary. This

makes accessing Unreal Tournament from other applications difficult. Therefore,
Gamebots (http://www.planetunreal.com/gamebots/), a modification to Unreal
Tournament, is built by researchers to bridge Unreal engine with the outside
applications. It opens a TCP/IP socket in Unreal engine and exchanges data with
the outside. USARSim enables Gamebots to communicate with the controllers. To
support our own control commands and messages, some modifications are applied
to Gamebots.

2.1.3 Controller (Pyro)
Controller is the user side application that is used for your research, such as

robotics study, team cooperation study, human robot interface study etc. Usually,
the controller works in this way. It f irst connects with the Unreal server. Then it
sends command to USARSim to spawn a robot. After the robot was created on the
simulator, the controller listen the sensor data and send commands to control the
robot. The client/server architecture of Unreal makes it possible to add multiple
robots into the simulator. However, since every robot uses a socket to
communicate, for every robot, the controller must create a connection for it.

 4

To facilitate the users and as an example of implementation, a Pyro plug-in
is included in USARSim. With this plug-in, we can use Pyro to control the robot
in the simulator. Pyro (http://pyrorobotics.org/) is a Python library, environment,
GUI, and low-level drivers used for explore AI and robotics. More information
about Pyro can be located from the following site:
http://pyrorobotics.org/pyro/?page=PyroModulesContents. The details of the Pyro
plug-in are described on section 8.

2.2 Simulator components

The core of the USARSim is the simulation of the interactive environment, the
robots and their sensors. We introduce the three kind of simulation separately in the
following sections.

2.2.1 Environment simulation
Environment makes a very important role in simulations. It provides the

context for the simulation and only with it, can the simulation make sense.
USARSim provides simulated disaster environments in the Urban Search and
Rescue (USAR) domain. Our environments are the simulations of the National
Institute of Standards and Technology (NIST) Reference Test Facility for
Autonomous Mobile Robots (http://www.isd.mel.nist.gov/projects/USAR/). NIST
built three test arenas to help researchers evaluate their robot’s performance.

We built all the virtual arenas from the AutoCAD model of the real arena.
To achieve high fidelity simulation, the textures used in the simulation are taken
from the real environment. For all of the arenas, the simulated environments
include:

• Geometric models: the model imported from the AutoCAD model of the
arenas. They are the static geometric objects that are immutable and
unmovable, such as the floor, wall, stair, ramp etc.

• Obstacles simulation: that simulates the objects that can move and
change their states. In addition, these objects also can impact the state of
a robot. For example, they cam change a robot’s attitude. These objects
include bricks, pipes, rubbles etc.

• Light simulation: that simulates the light environment in the arena.
• Special effects simulation: that simulates the special stuff such as

glasses, mirrors, grid fenders etc.
• Victim simulation: is the simulation of victims that can have their actions

such as waving the hand, groaning, and other distress actions.
All the virtual arenas are built with Unreal Editor. With it, users can build

their own environment. Details please read section 9.1.
The real arenas and simulated arenas are listed below:
The yellow arena: the simplest of the arenas. It is composed of a large flat

floor with perpendicular walls and moderately difficult obstacles.

 5

Figure 2 Yellow arena

Figure 3 Simulated yellow arena

The orange arena: a bi-level arena with more challenging physical obstacles
such as stairs and a ramp. The floor is covered with debris including paper, pipes,
and cinder blocks.

 6

Figure 4 Orange arena

Figure 5 Simulated orange arena

The red arena: that presents fewer perceptual difficulties but places
maximal demand on locomotion. There are rubble piles, cement blocks, slabs and
debris etc. on the floor.

 7

Figure 6 Red Arena

Figure 7 Simulated red arena

2.2.2 Sensor simulation
Sensors are important to robot control. Through checking the object’s state

or some calculating in the Unreal engine, three kinds of sensor are simulated in
USARSim.

• Proprioceptive sensors

 8

It includes battery state and headlight state.
• Position estimation sensors

It includes location, rotation and velocity sensors.
• Perception sensors

It includes sonar, laser and pan-tilt-zoom (ptz) camera.
All the sensors in USARSim are configurable. You can easily mount a

sensor on the robot by adding a line into the robot’s configuration file. When you
mount the sensor, you can specify its name, type and the position where it’s
mounted and the direction it will face. For every kind of sensor, you also can
specify its properties, such as, the maximum range of sonar, the resolution of laser
and FOV (field of view) of camera. For more information about configuring a
sensor please read section 6. Details of mounting a sensor on the robot please go
to section 7.

2.2.3 Robot simulation
Using the rigid-body physics engine, Karma engine, embedded in Unreal

Tournament 2003, we built a robot model to simulate the mechanical robot. The
robot model includes chassis, parts (tires, linkage, camera frame etc.) and other
auxiliary items, such as sensors, headlight etc.. All the chassis and parts are
connected through simulated joints that are driven by torques. Three kinds of joint
control are supported in the robot model. The zero-order control makes the joint
spin a specified angle. The first-order control lets the joint rotate under the
specified spin speed. The second-order control applies the specified torque on the
joint. The robot gets the control command through the Gamebots.

With this robot model, users can build a new robot without or only with a
few of Unreal Script programming. For the steps of building your own robot,
please read section 9.3.

In USARSim, five robots are already built for you. They are Pioneer robots:
P2AT and P2DX, the Personal Exploration Rover (PER) built by CMU, the Corky
built by the CMU USAR team and a typical four-wheeled car. These robots are
explained later in section 7.

3 Installation

3.1 Requirements

Operating System: Windows 2000/XP or. Linux
Software: UT2003 and the 2225 patch
Optional requirements: If you want to use Pyro as the controller, you need Pyro
2.2.1.

3.2 Install UT2003 and the patch

3.2.1 Windows
1) Install UT2003.
2) Go to UT2003 website download the 2225 patch

(http://www.unrealtournament.com/ut2003/downloads.php). And then
double click the file to install the patch.

 9

3.2.2 Linux
1) Install UT2003

a. Copy the 'linux_installer.sh' in the third UT2003 cdrom to a
temporary directory on the hard drive.

b. Before running the script you need to tell the system where the
CDROM is. You can do this by

export SETUP_CDROM = /mnt/cdrom

change /mnt/cdrom to wherever your cdrom mounts.
c. Run the installer from the temporary directory:

 sh /tmp/linux_installer.sh

and follow the prompts.
d. The installer can be a little quirky when asking for disks.

Basically when it asks for the disk, try all three. Sometimes it
asked disk 1, but only continued when gave it disc 2.

e. The game only works with Nvidia cards. You may need to install
the NVIdia driver.

2) Install 2225 patch
a. Download ut2003 2225 patch from

http://www.unrealtournament.com/ut2003/downloads.php
b. Restore the patch somewhere on your drive:

tar -xvIf ut2003lnx_patch2225.tar.bz2
or
 bzip2 -d ut2003lnx_patch2225.tar.bz2
and then

tar -xvf ut2003lnx_patch2225.tar
c. Copy the files to override the file in ut2003 installation directory:

cp -rfv ut2003-lnx-2225/* /to/where/ut2003/
3.3 Install USARSim

The installation is simple. You just unzip the files to the UT2003 installation directory. There is a testing
control interface written in C++. If you don’t want to install Pyro, you can copy USAR_UI to your
machine and try it. USAR_UI only works on Windows. You can use it to send commands to USARSim
and any message gotten from the Unreal server will be displayed in USAR_UI.

3.4 Install the controller (Pyro)

This step is optional. Install it only when you want to use Pyro to control
USARSim.

3.4.1 Windows
Pyro is designed for Linux. Although Python, the development language

used by Pyro, works under any system, Pyro uses some features only supported
by Linux, such as Linux environment variable, shell commands. This makes Pyro
only work on Linux. We have made Pyro work under Windows. The modified
code can be found on pyro_win.zip. To install Pyro under windows:

1) Following the Pyro Installation web page
(http://pyrorobotics.org/pyro/?page=PyroInstallation) to install all the

 10

packages/software needed by Pyro. Please remember download and
install the windows version.

2) After you restored Pyro, you need not run ‘make’ to compile it. Since it
uses gcc, gmake to compile files, if you have none of them installed on
your machine, the makefile will not work. Furthermore, it also tries to
use XWindow, so give up compiling it under windows. Since this step
only affects the plugged third-part robots or simulators, it has no impact
to USARSim. After you restore Pyro, you need to download and unzip
pyro_win.zip to overwrite the files in the Pyro directory.

3.4.2 Linux
1) Following the Pyro Installation web page

(http://pyrorobotics.org/pyro/?page=PyroInstallation) to install Pyro.
2) Download the pyro_linux.tar in USARSim and restore it to Pyro

directory to install the USARSim plug-in.
4 Run the simulator

4.1 The steps to run the simulator

Basically, running the simulator needs three steps.
1) Start Unreal Server

Go to UT2003/system directory, and then execute:

ucc server map_name?game=USARBot.USARDeathMatch –i=USARSim.ini

where map_name is the name of the map. It can be DM-USAR_yellow (the
yellow arena), DM-USAR_orange (the orange arena) or DM-USAR_red (the
red arena).

2) Start Unreal Client
Go to UT2003/system directory, and then execute:

 ut2003 ip_address?spectatoronly=true?quickstart=true

where ip_address is the ip address of the server. If you run the server and
client on the same machine, the ip address is 127.0.0.1.

3) Start the Controller
After start the Unreal server, you can run your own application now.

Note: Only start Unreal server once. Sometimes, you may forget to stop the Unreal
server, and then start another one. This will bring troubles to you. So make sure
you only have one Unreal server on a machine.

After the Unreal client started, you can attach the viewpoint to any robot in the simulator. Go to the
Unreal client, click left mouse button, you will get the picture viewed from the robot. To switch to next
robot, click left mouse button again. To return back to the full viewpoint, click the right mouse button.
When your viewpoint is attached to a robot, you can press key ‘C’ to get a viewpoint that looks over the
robot. Pressing ‘C’ again will bring you back to the viewpoint of the robot.

 11

TIP: Left mouse button attaches your viewpoint to a robot. Right mouse button returns
your viewpoint to full viewpoint. Pressing ‘C’ , let you switch viewpoint between
robot’s viewpoint and the look over viewpoint.

Besides the step by step manually run USARSim, you can embed step 1 and 2

into your application. That is, let your application start the Unreal server and client
for you, and then start itself. The examples in the following section will you show
you how to run USARSim manually and automatically.

4.2 Examples

There are two controllers in the USARSim package. We explain them in section
4.2.1 and section 4.2.2 separately.

4.2.1 The testing control inter face
USAR_UI is a testing interface written by Visual c++ 6.0. It only works on

Windows. You can use it to send any commands to the server. And it will display
all the messages came from the server to you. Follow the step 1 and 2 to start
Unreal server and client. And then execute usar.exe. This will pop up a window.
The usages of the interface are:

1) Click "Connect" button to connect to the server.
2) Type the spawning robot command in the command combo box, then

click "send" to send out the command. The spawning command looks
like: "INIT { ClassName USARBot.USARCar} { Location 312,-600,-
305} ", where ‘ClassName USARBot.USARCar’ is the robot name. It can
be USARCar, USARBc, P2AT, P2DX and Rover. The ‘Location’ is the
initial position of the robots. You can refer the recommended start
position in table 1 to decide the ‘Location’ parameter.

3) After add the robot to the simulator, you can try control commands
through the command combo box. The messages from the server are
displayed on the bottom text box. To view a message, double click the
message.

4) You can also use joystick or keyboard+mouse to control the robot. To do
it, click the “Command” button in the “Mode” group. To return to the
command mode, click the right button of the mouse.
For joystick:

If you have set joystick enable in Unreal, you need to disable it. So
the system will not be confused. The ways of using joystick are:

• Push joystick forward/backward will move the robot
forward/backward.

• Push joystick to left/right side will turn the robot to left/right.
• Push POV button up/down will tilt the camera
• Push POV button left/right will pan the camera.

For keyboard+mouse:
Since the interface and Unreal share the keyboard and mouse, when

you control the robot, you MUST set the interface is active. Otherwise,

 12

the interface cannot get the input from the keyboard and the mouse. To
control the robot,

• Up/Down Arrow key moves the robot forward/backward.
• Left/right Arrow key turns the robot to left/right.
• Move mouse up/down to tilt the camera.
• Move mouse left/right to pan the camera.

4.2.2 Pyro
The Pyro plug-in embeds the Unreal server/client loading into it. To start

Pyro, go to the pyro/bin directory. If you are using windows OS, execute the
pyro.py. If you are on Linux, run the shell file pyro. After the Pyro interface is
launched,

1) Click the ‘Simulator’ button and select USARSim.py on the
plugins\simulators directory.

2) Select the arena you want to load on the plugins\worlds\USARSim.py
directory. NOTE: here USARSim.py is directory not a file. Pyro will
automatically load Unreal server and client for you. Under linux OS,
the Unreal client is launched in another console. Using Ctrl+Alt+F7 and
Ctrl+Alt+F8, you can switch between the two consoles.1

3) Click the ‘Robot’ button and select the robot you want to add on the
plugins\robots\USARBot directory. You will see the robot is added in the
virtual environment.

4) You should be able to control the robot using the ‘Robot’ menu now.
5) To view the sensor data or camera state, you can select the ‘Service…’

from the ‘Load’ menu to load a service. On the
plugins\services\USARBot directory, select the sensor you want to view.

6) You can also try to load a Brain to control the robot. Click the ‘Brain’
button and select a brain on the plugins\brains. For example, you can
select Slider.py or Joystick.py to control the robot. You also can select
BBWander.py to let the robot wander in the arena.

More details about Pyro, please read section 8.

Tips: To switch among windows, you can use Alt+Tab to switch window.

To get control from UT2003, pressing Esc can let you get window’s control back.

To pause the simulator, switch to Unreal client and then press Esc.

5 Communication & Control (Messages and commands)
In this section, we introduce how to communicate between USARSim and your
application. It will help you understand how to control the robot in the USARSim
virtual environment.

1 In Linux KDE, UT2003 doesn’ t support switching focus to other applications. This is a known bug of
UT2003. As a solution, we use launching UT2003 on another console to let user switch between UT2003
and other applications. When this UT2003 bug is fixed, we will move back to fire UT2003 and Pyro on the
same console.

 13

5.1 TCP/IP socket

As we mentioned before, Gamebots is the bridge between Unreal and the
controller. It opens a TCP/IP socket for communication purpose. The IP address of
the TCP/IP socket is the IP address of the machine runs the Unreal server. The default
port number of the socket is 3000 and the maximum allowed connection number is
16. To change these parameters, we can go to the BotAPI.ini file in the Unreal system
directory. The section [BotAPI.BotServer] of BotAPI.ini looks like:

[BotAPI.BotServer]
ListenPort=3000
MaxConnections=16

Where, ‘ListenPort’ is the port number of the socket. ‘MaxConnections’ is the

maximum connection number. You can change or add (if you cannot find the
parameters in the INI file) the parameters to the value you want.

5.2 The protocol

The communication protocol is the Gamebots protocol. All the data (messages and commands) follow
the format:

data_type { segment1} { segment2} …

where

data_type: specify the type of the data. It is upper case characters. Such as
INIT, STA, SEN, DRIVE etc.

segment: is a list of name/value pairs. Name and value are separated by
space. For example, for “Location 100,200,300” , the name is
‘Location’ , the value is ‘100,200,300’ . For the segment “Name
Left Range 800.0” , the names are ‘Name’ and ‘Range’ , the
values are ‘Left’ and ‘800.0’ .

A message or command is constructed by a data_type and multiple
segments. data_type and segments are separated by space.

5.3 Messages

Right now, we have two types of message. State message is the message reports the robot’s state. Sensor
message contains the sensor data.

• State message

A state message looks like:

STA { Time t} { Camera pitch,yaw,roll} { Attitude pitch,yaw,roll}
{ Location x,y,z} {Velocity x,y,z} { LightToggle bool} { LightIntensity int}
{ Battery float}

Where:
{ Time t} : ‘ t’ is the UT time in second. It starts from

the time the UT server start works.
{ Camera pitch,yaw,roll} : The attitude of the camera. The values are

���������We may need to change roll
to zoom

 14

pitch, yaw and roll angle in integer. 65535
equals to 360 degree.

{ Attitude pitch,yaw,roll} : The attitude of the robot. The values are the
same as Camera’s.

{ Location x,y,z} : Position of the robot. The values are
positions in x, y, z axes in UT unit (UU).

{Velocity x,y,z} : The velocity of the robot. The values are
speeds in x, y, z axes direction in UU/s.

{ LightToggle bool} : Indicate whether the headlight has been
turned on. 'bool’ is true means turning on.
False value means turning off

{ LightIntensity int} : Light intensity of the headlight. Right now,
it always is 100.

{ Battery float} : ‘ float’ is the power state of the battery. Its
range is 0.0~100.0. 100.0 means the battery
is fully charged.

Example: STA { Time 8.29} { Camera 63541,32768,0} {Attitude
65533,0,0} { Velocity -1.59,0.00,-1.95} { LightToggle False}
{ LightIntensity 100} {Battery 80.0}

• Sensor message

o Sonar Sensor

SEN { Type Range} { Name string Range number} {Name string
Range number} …

Where:
‘ { Name string Range float} ’ is the sensor data. ‘string’ is the
sensor name, ‘ float’ is the range value in UU.
Example: SEN { Type Range} { Name Right Range 144.69} { Name
Left Range 240.19}

o Laser Sensor

SEN { Type RangeScanner} { Name string} { Location x,y,z
Rotation pitch,yaw,roll} {Data r1,r2,r3…}

Where:
{ Name string} ‘string’ is the sensor name.

{ Location x,y,z Rotation
pitch,yaw,roll}

‘x,y,z’ is the sensor position in UU.
‘pitch,yaw,roll’ is the rotation of the
sensor. NOTE: the rotation is the
absolute rotation.

{ Data r1,r2,r3…} ‘ r1,r2,r3…’ is a serious of range
values.

Example: SEN { Type RangeScanner} { Name Scanner1}
{ Location 426.28,-599.95,-474.12 Rotation 15136,16384,16}
{ Data

���������Make sure battery sensor is
added into USARSim

 15

266.55,359.43,364.46,377.57,400.25,1000.00,1000.00,1000.00,916
.72,852.27,811.95,790.88,786.71,799.01,829.10,880.44,739.17,618
.73,541.64,490.64,457.05,436.19}

o Human Motion Detection

SEN (Type HumanMotion) { Name string} {Prob float}

Where:
{ Name string} ‘string’ is the sensor name.

{Prob float} ‘ float’ is the probability of it’s human
motion.

Example: SEN { Type HumanMotion} {Name Motion} { Prob
0.81}

o Sound Sensor

SEN { Type Sound} { Name string} { Loudness float} {Duration
float}

Where:
{ Name string} ‘string’ is the sensor name.

{ Loudness float} ‘ float’ is the loudness of the sound.
{Duration float} ‘ float’ is the duration of the sound.

Example: SEN { Type Sound} { Name Sound} { Loudness 17.22}
{ Duration 6.63}

5.4 Commands

The supported commands are:

• Add a robot to UT world:

INIT { ClassName robot_name} { Location x,y,z}

Where:
{ ClassName robot_name} ‘ robot_name’ is the class name of the

robot. It can be USARBot.USARCar,
USARBot.USARBc, USARBot.P2AT,
USARBot.P2DX and USARBot.Rover.

{ Location x,y,z} ‘x,y,z’ is the stat position of the robot in
UU. For different arena, we need different
position. The recommended positions are
listed on table 1.

Table 1 Recommended start position for the arenas

Arena Recommended Star t Position
Yellow 1200,345,-450
Orange 312,-600,-305
Red 200,600,-450

Example: INIT { ClassName USARBot.USARCar} { Location 312,-600,-
305} will add a four wheels robot.

���������Check this with CMU robot

���������We may need to change it
to frequency

 16

• Control the Robot:

There are two kinds of control command. The first kind controls the left
and right side wheels. The second kind controls a specified joint of the
robot.

o DRIVE { Left float} { Right float} { Light bool} { Flip bool}

{ Left float} ‘ float’ is spin speed for the left side wheels. Its range is
–1.0~1.0. Positive value means moving forward.

{ Right float} ‘ float’ is spin speed for the right side wheels. Its range
is –1.0~1.0. Positive value means moving left.

{ Light bool} ‘bool’ is whether turn on or turn off the headlight. The
possible value is True/False.

{ Flip bool} If ‘bool’ is True. This command will flip the robot.

Example: DRIVE { Left 1.0} { Right 1.0} will drive the robot moving
forward.
DRIVE { Left -1.0} { Right 1.0} will turn the robot to left side.
DRIVE { Light true} will turn on the headlight.
DRIVE { Flip true} will flip the robot

o DRIVE { Name string} { Steer int} {Order int} {Value float}

Where:

{ Name string} ‘string’ is the joint name.
{ Steer int} ‘ int’ is the steer angle of the joint.

{ Order int} ‘ int’ is the control mode. It can be 0~2.
0: zero-order control. It controls rotation angle.
1: first-order control. It controls spin speed.
2: second-order control. It controls torque.

{ Value float} ‘ float’ is the control value. For zero-order control, it’s
the rotation angle in integer. 63356 means 360 degree.
For first-order control, it’ s the spin speed in
integer/second. For second-order control, it’s the
torque.

Example: DRIVE { Name LeftFWheel} { Steer 16384} will steer the left
front wheel 90 degree.
DRIVE { Name LeftFWheel} { Order 1} { Value 2000} will
make the left front wheel spin at 2000*360/65535
degree/second.

• Control the camera:

CAMERA { Rotation pitch,yaw,roll} { Order int} { Zoom int}
Where:
{ Rotation pitch,yaw,roll} ‘pitch,yaw,roll’ is the rotation angle of the

camera. It could be relative value or
absolute value. This is set on the robot
configuration file.

 17

{Order int} It’s the as the order parameter of DRIVE
command. Without specifying the
parameter, the system treats it as ‘0’ .

{ Zoom int} ‘ int’ is the zoom value. Positive value
means zoom in. Negative value means
zoom out.

Example: CAMERA { Rotation 1820,0,0} will tilt the camera 10 degree if
the robot uses relative value. If the robot uses absolute value, it
will tilt the camera to 10 degree.
CAMERA { Zoom 100} will zoom in the camera.

• Control the sensor:

SENSOR { Scan true}
This command is used to manually control range scanner. For example,
you drive the robot to some place and then want to collect the range data.
‘ {Scan true} ’ will trigger the range scanner, such as laser, to scan its
environment once. After it finishes, it will stop and go back to its initial
position.

6 Sensors
In USARSim, every sensor is an instance of a sensor class (a sensor type). All the

objects of a sensor class have the same sensor capability. You can configure the
capability of a sensor class to satisfy your need or you can create a new sensor from an
existed sensor class and change its properties to get a new type of sensor.

In USARSim, except the state sensor, all the other sensors can add noise and apply
distortion to their data. By changing corresponding parameters, we can get different
quality sensor data.

In this section, we will explain how the sensor works and how to configure it. To
learn how to build your own sensor, please read section 9.2.
6.1 State sensor

6.1.1 How the sensor works
The State sensor reports the robot’s state. Basically, it just checks the robot’s

state in Unreal engine and then sends it out. So all the data in the state sensor data
package should be treated as the truth data.

6.1.2 How to configure it
None. We needn’ t configure it.

6.2 Sonar sensor

6.2.1 How the sensor works
Sonar sensor is used to detect distance. In USARSim, sonar sensor is

simulated by emitting a line from the sensor position along the direction of the
sensor in Unreal world. The first point met by the line is the hit point. The
distance between the hit point and the sensor is the returned range value. Before
the data is sent back, a random number is added to simulate random noise. Then a

 18

distortion curve is used to interpolate the range data to simulate the real sonar
sensor.

6.2.2 How to configure it
The range sensor configuration in the usar.ini f ile looks like:

[USARBot.RangeSensor]
HiddenSensor=true
MaxRange=1000.000000
Noise=0.05
OutputCurve=(Points=((InVal=0.000000,OutVal=0.000000),(InVal=1000.0
00000,OutVal=1000.000000)))

Where
HiddenSensor This Boolean value is used to indicate whether the sensor

will be visually showed in the simulator. Setting it to true
will hide the sensor. We recommend setting it to true if it
is not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

MaxRange It is the maximum distance that can be detected.
Noise It is the relative random noise amplitude. With the noise,

the data will be data = data + random(noise)*data
OutputCurve It’s the distortion curve. It is constructed by a serial of

points that describe the curve.
6.3 Laser sensor

6.3.1 How the sensor works
Laser sensor is very similar to sonar sensor. In USARSim, laser sensor is

treated as a serial of sonar sensors. The data is obtained by rotating the sonar
sensor from the start direction to the end direction step by step. The step interval
is calculated from the resolution. Laser sensor can work in two modes. In the
automatic mode, laser sensor automatically scans data every specified time
interval. In manual mode, laser sensor only work when it gets a scan command.
Every time it gets a command, it only scan once.

6.3.2 How to configure it
The laser sensor configuration in the usar.ini file looks like:

[USARBot.RangeScanner]
HiddenSensor=False
MaxRange=1000.000000
ScanInterval=0.5
Resolution=800
ScanFov=32768

 19

bPitch=false
bYaw=true
Noise=0.0
OutputCurve=(Points=((InVal=0.000000,OutVal=0.000000),(InVal=1000.0
00000,OutVal=1000.000000)))

Where
HiddenSensor This boolean value is used to indicate whether the sensor

will be visually showed in the simulator. Setting it to true
will hide the sensor. We recommend setting it to true if
it’s not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

MaxRange It is the maximum distance can be detected.
ScanInterval It is the time interval between scanning used in automatic

mode.
Resolution It’s the scan resolution, the step length of rotating from

start direction to the end direction. The unit is integer.
65535 means 360 degree.

ScanFov It’s the scan range in integer.65535 means 360 degree.
bPitch A Boolean value that indicates the scan plan. True means

scanning in the tilt plan (x-z plan).
bYaw A Boolean value that indicates the scan plan. True means

scanning in the pan plan (x-y plan).
Noise It is the relative random noise amplitude. With the noise,

the data will be data = data + random(noise)*data
OutputCurve It’s the distortion curve. It is constructed by a serial of

points that describe the curve.

Note: Too much sensor data will impact the system. Do not set too high of a resolution or
scan frequency.

6.4 Sound sensor

6.4.1 How the sensor works
Sound sensor detects the victims’ sound. In USARSim, sound sensor finds

all the sound sources and calculates the source that hears to be the loudest at the
robot’s location. The loudness decreases in the square of the distance.

6.4.2 How to configure it
The sound sensor configuration in the usar.ini file looks like:

[USARBot.SoundSensor]
HiddenSensor=True
Noise=0.05

 20

OutputCurve=(Points=((InVal=0.000000,OutVal=0.000000),(InVal=1000.0
00000,OutVal=1000.000000)))

Where
HiddenSensor This boolean value is used to indicate whether the sensor

will be visually showed in the simulator. Setting it to true
will hide the sensor. We recommend setting it to true if
it’s not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

Noise It is the relative random noise amplitude. With the noise,
the data will be data = data + random(noise)*data

OutputCurve It’s the distortion curve. It is constructed by a serial of
points that describe the curve.

6.5 Human-motion sensor

6.5.1 How the sensor works
Human motion sensor simulates pyroelectric sensor. It’s simulated by

finding all the victims that are in the FOV of the sensor within the testing range.
The first moving victim will be checked. Its distance from the robot and its
motion speed and amplitude are used to calculate the probability of it is a human
motion.

6.5.2 How to configure it
The human-motion sensor configuration in the usar.ini file looks like:

[USARBot.HumanMotionSensor]
HiddenSensor=True
MaxRange=1000
FOV=60
Noise=0.1
OutputCurve=(Points=((InVal=0.000000,OutVal=0.000000),(InVal=1000.0
00000,OutVal=1000.000000)))

Where
HiddenSensor This boolean value is used to indicate whether the sensor

will be visually showed in the simulator. Setting it to true
will hide the sensor. We recommend setting it to true if
it’s not necessary to show the sensor. When you want to
confirm if the sensor is placed in the correct position and
has the correct direction, you can temporarily set it to
false.

MaxRange It’s the maximum detecting range in UU.
FOV It’s the filed of view of the sensor in integer. 65535

 21

meams 360 degree.
Noise It is the relative random noise amplitude. With the noise,

the data will be data = data + random(noise)*data
OutputCurve It’s the distortion curve. It is constructed by a serial of

points that describe the curve.
7 Robots

All robots in USARSim have a chassis, multiple wheels, a bunch of sensors, a
camera, and headlight. The robots are configurable. You can specify which sensor and
where the sensor is mounted. You also can configure the properties of the robots, such as
the battery life and the frequency of data sending etc. The robots are based on the real
robots and they have different capabilities. This section will introduce the robots one by
one and explain how to configure it.
7.1 P2AT

7.1.1 Introduction
P2AT is the 4-wheel drive all-terrain pioneer robot from ActivMedia

Robotics, LLC. For more information please visit ActivMedia Robotics’ website:
http://www.activrobots.com.

In summary, P2AT has:
• Four wheels
• Skid-steer
• Size: 50cm x 49cm x 26cm
• Wheel diam: 21.5cm

In our simulation, it’s equipped with
• PTZ camera
• Front sonar ring
• Rear sonar ring

Figure 9 Real P2AT robot

Figure 8 Simulated P2AT

 22

7.1.2 Configure it
The whole P2AT robot configuration can be found in the section

[USARBot.P2AT] of usar.ini file. The following list the parameters you may need
to change. Other parameters please refer section 9.3.2.

[USARBot.P2AT]
msgTimer=0.200000
bAbsoluteCamera=true
Sensors=(ItemClass=class'USARBot.RangeSensor',ItemName="F1",Positio
n=(Y=-35.11,X=20.18,Z=13),Direction=(Pitch=0,Yaw=-16384,Roll=0))
...
Sensors=(ItemClass=class'USARBot.RangeSensor',ItemName="R8",Positio
n=(Y=-35.11,X=-20.18,Z=13),Direction=(Pitch=0,Yaw=-16384,Roll=0))
Camera=(ItemClass=class'USARBot.Sensor',ItemName="Camera",Parent="
CameraTilt",Position=(Y=0,X=13,Z=0),Direction=(Pitch=0,Yaw=0,Roll=0)
)
CameraFov=50

Where

msgTimer It’s the time interval between two messages sending.
bAbsoluteCamera It indicates whether the camera control command uses

an absolute value or not.
Sensors It’s the sensor mounted on the robot. The structure of

sensor mounting is:
ItemClass The sensor class or the type of the sensor.
ItemName The name assigned to the sensor

Position The mounting position relative to the
geometric center of the robot.

Direction The facing direction of the sensor relative
to the robot.

Camera It’s the camera mounted on the robot. It uses the same
structure of the sensor.

CameraFov It is the field of view of the camera in degrees.
7.2 P2DX

7.2.1 Introduction
P2DX is the 2-wheel drive pioneer robot from ActivMedia Robotics, LLC.

For more information please visit ActivMedia Robotics’ website:
http://www.activrobots.com.

In summary, P2DX has:
• Two wheels
• Differential steering
• Size: 44cm x 38cm x 22cm
• Wheel diam: 19cm

In our simulation, it’s equipped with
• PTZ camera

 23

• Front sonar ring

7.2.2 Configure it
It’s the same as P2AT.

7.3 RER

7.3.1 Introduction
PER is the Personal Exploration Rover built by CMU for education and

demonstration purpose. The robot uses rocker-bogie suspension system to adapt
to terrain. It has a pan-tilt camera mounted on it. For details about PER please
visit the PER home page: http://www-2.cs.cmu.edu/~personalrover/PER/

In summary, PER has:
• Six wheels. Four drive wheels and two omnidirectional wheels.
• Double Ackerman steering
• Rocker-Bogie suspension system
• Differential body pose adjusting
• A pan-tilt camera that can take 360 degree panorama

In USARSim, we use classname USARBot.Rover to represent PER.

Figure 11 Real P2DX robot

Figure 10 Simulated P2DX

Figure 13 Real PER robot

Figure 12 Simulated PER

 24

7.3.2 Configure it
It’s the same as P2AT.

7.4 Corky

7.4.1 Introduction
Corky is the robot built by CMU USAR term. Its features are:

• Two wheels.
• Differential steering
• A pan-tilt camera
• 5 range sensors

In USARSim, an additional headlight is added to the robot. This robot model
is our first Karma vehicle model. It’s designed for this specified robot. To archive
speed control, PID controllers are built for both wheels of Corky.

7.4.2 Configure it
The configuration of Corky in usar.ini file looks like:

[USARBot.USARBc]
msgTimer=0.200000
bSpeedControl=True
bAbsoluteCamera=False
Sensors=(SensorClass=class'USARBot.RangeSensor',SenName="Front",Pos
ition=(X=-80,Y=0,Z=50),Direction=(Pitch=0,Yaw=32768,Roll=0))
…
Sensors=(SensorClass=class'USARBot.RangeSensor',SenName="Right",Pos
ition=(X=0,Y=-40,Z=50),Direction=(Pitch=0,Yaw=-16384,Roll=0))
Kp=0.2
Ki=0.8
Kd=0.0
MinOut=-20.0
MaxOut=20.0

Where:

Figure 15 Real Corky

Figure 14 Simulated Corky

 25

msgTimer It’s the time interval between two messages sending.
bSpeedControl It indicates whether Corky uses speed control. Set to

false, the value in the control command is interoperated
as torque. Otherwise, the value is treated as speed.

bAbsoluteCamera It indicates whether the camera control uses absolute
value or not. Set to false, the value in the control
command is interoperated as absolute value.

Sensors It’s the sensor mounted on the robot. The structure of
sensor mounting is:
SensorClass The sensor class or the type of the

sensor.
SenName The name assigned to the sensor

Position The mounting position relative to the
geometric center of the robot.

Direction The facing direction of the sensor
relative to the robot.

Kp The proportional parameter of the PID control. Both
wheel use the same parameter.

Ki The integral parameter of the PID control.
Kd The derivative parameter of the PID control.

MinOut The minimum output torque of the motor engine.
MaxOut The maximum output torque of the motor engine.

7.5 Four-wheeled Car

7.5.1 Introduction
Very similar to Corky except it’s a four-wheeled vehicle. It also has a

camera, a headlight, and four range sensors mounted on the front, back and left,
right side.

7.5.2 Configure it
It’s the same as Corky.

Figure 16 Simulated Foue-wheeled Car

 26

8 Controller – Pyro
The whole description of Pyro can be found on the Pyro Curriculum:

http://pyrorobotics.org/pyro/?page=PyroModulesContents. In this section we only
explain the contents involved in USARSim.
8.1 Simulator and wor ld

The USARSim simulator loader is put in the plugins\simulators directory. The
loader USARSim.py is a Python program that can load the Unreal server and client
for the user. It reads the world file to figure out which arena (map) you want. Then, it
will start Unreal server with the arena (map) in the Unreal world. After a wait of 5
seconds to load the server, it will launch the Unreal client.

The world files for USARSim are stored on plugins\worlds\USARSim.py
directory (NOTE: here USARSim.py is not a file. It’s a directory.). The file follows
the INI file format. A world file looks like:

[Server]
Path=c:\ut2003
LoadServer=true
IP=127.0.0.1
Port=3000
Map=DM-USAR_yellow
Location=1200,345,-450

Where:

Path The path you install UT2003.
LoadServer A Boolean variable indicates whether the loader needs to start

Unreal server. If you already started Unreal server or you want
to run Unreal server on another machine, you need to set
LoadServer to false. Default value is true.

IP The IP address of the Unreal server. Default value is 127.0.0.1
Port The port number of the Gamebots. Default value is 3000. The

port number should be the same as the “ListenPort” on
BotAPI.ini file in the Unreal system directory (more details see
section 5.1).

Map The Unreal map you want to load. For yellow, orange and red
arenas, they are DM-USAR_yellow, DM-USAR_orange and
DM-USAR_res.

Location The initial position where the robot will be spawned. Please
refer Table 1 to decide the values you want.

8.2 Robots

USARSim robot drivers are written for Pyro. In summary, there are three levels of the drivers.

The lowest level driver is robots\driver\utbot.py. It communicates with Unreal server through TCP/IP
socket. The main functionaries in the driver are

1) Creating connection with Unreal server

 27

2) Sending commands to Unreal sever.

3) Listening and parsing messages from Unreal server.

In robots\USARBot directory are the low level drivers. __init__.py is the basic driver that provides the
Pyro interface. It lets the Pyro commands and data be understood by USARSim. The P2AT.py, P2DX.py.
PER.py etc are the drivers extended from the basic driver. These drivers configure the basic driver
according to the special robot. For example, it configures which sensor is mounted on the robot.

At last, you will find several fi les in the plugins\robots\USARBot directory. These fi les are the wrapper
to the robot drive. You can directly load these fi les from Pyro GUI to add a robot into the USARSim
virtual environment.

8.3 Services

To help user has a good sense about the sensors, some services are added to visualize the sensor data.
These sensor visualizations are modified from the visualization module of PyPlayer: Python Client for
Player/Stage (http://robotics.usc.edu/~boyoon/pyplayer/). To load the services, from the ‘Load’ menu
select ‘Services …’. Then go to plugins\services\USARBot directory you can found all the services. The
real codes for these services are in robots\USARBot__init__.py file. The supported sensors are:

• Sonar

Figure 17 Sonar visualization

• Laser

 28

Figure 18 Laser visualization

• PTZ Camera

Figure 19 PTZ Camera viwer and controller

8.4 Brains

Pyro refers to control programs as “Brains” . Since the USARSim API follows the Pyro interface, the
brains of Pyro will work for USAR robots. The tested working brains include Slider.py, Joystick.py, and
BBWander.py.

9 Advanced User
This section is for the advanced users who want to build their own simulator. We

assume the user already has programming experience or 3D modeling experience and
robot background.

Before we start this section, we need to change the ut2003.ini file that locates on the
Unreal system directory. Adding the following lines to the corresponding sections in
ut2003.ini will let Unreal engine recognize our own model. With this modification, we
can compile and use our models in Unreal Editor.

���������Need to add Zoom and
camera pose visualization

 29

[Engine.GameEngine]
ServerPackages=BotAPI
ServerPackages=USARBot

[Editor.EditorEngine]
EditPackages=BotAPI
EditPackages=USARBot

[UnrealEd.UnrealEdEngine]
EditPackages=USARBot

NOTE: You need to modify ut2003.ini before you build your own models.

9.1 Build your arena

An arena is an Unreal map. It includes geometric model and the objects in the environment. The objects
can be obstacles such as bricks or victims that can move their bodies. Before building your arena, we must
keep in mind that all the meshes must be static meshes. Karma object only works well with static meshes.
In addition, static meshes can accelerate 3D graphic rendering.

NOTE: All the meshes must be static mesh. Karma engine only works well with static
meshes.

When you build a new arena, there are three things you may need to do: 1) building geometric model, 2)
simulate some special effects and 3) adding objects such as obstacles and victims into the arena. The three
things are explained in the following sections.

9.1.1 Geometr ic model
We have two options to build geometric model. One is importing an existing

model into Unreal. Another is building the model by hand in Unreal. After
building the model, we need to transfer it into static mesh.

9.1.1.1 Import the existed model
The basic idea of importing model is converting your model into a format

that Unreal Editor can read in. The file formats that supported by Unreal
engine are:

• ASC: A 3D graphics file created from 3D Studio Max.
• ASE: Short for ASCII Scene Exporter.
• DXF: 3D graphic image file originally created by AutoDesk which

stores 3D scenes and models.

 30

• LWO: Is from LightWave model program.
• T3D: Is the text file holds a text list of Unreal map objects.
The details about how to import a 3D model are described in the

document:
UDN: Converting CAD data into Unreal

(http://udn.epicgames.com/Content/CADtoUnreal).

9.1.1.2 Build it with Unreal Editor
Unreal Editor is a nice 3D authoring tool. There are two websites you may

need to visit if you want to learn how to build a map with Unreal Editor.
UDN (Unreal Developer Network): http://udn.epicgames.com
Unreal Wiki: http://wiki.beyondunreal.com/wiki/
The ‘General Editor’ category in UDN contents documents all the details

of modeling with Unreal Editor. The ‘Topics On Mapping’
(http://wiki.beyondunreal.com/wiki/Topics_On_Mapping) lists the topics
involved mapping in Unreal Wiki.

9.1.2 Special effects
Most of the special effects are obtained by applying special materials. Please

read the UDN: Material Tutorial
(http://udn.epicgames.com/Content/MaterialTutorial) to have a sense of what an
Unreal material is.

The grid fender effect is achieved by using textures with an alpha-channel.
The gray level in the alpha-channel indicates how transparent the corresponding
pixel will be. Alpha-channel with grid bitmap will bring us the grid fender effect.

The glass effect is simulated by semi-transparent material. A texture with
gray alpha-channel will give us semi-transparent effect. Using shaders material,
we can get higher fidelity effects.

The mirror effect is obtained by using scripted texture. The basic idea is to
put a camera in the place you want to put the mirror and then render the picture, in
the camera, into the place to fake the mirror effect. The idea comes from
Unrealops (http://unrealops.com). The tutorial of adding a mirror can be found at:
Security Camera Tutorial
(http://unrealops.com/modules.php?op=modload&name=Reviews&file=index&re
q=showcontent&id=24). According to the author, this approach doesn’t work
online. To fix this shortcoming, a customized CameraTextureClient named
myCameraTextureClient is created in USARSim. Replace all the
CameraTextureClient by myCameraTextureClient in the tutorial, will give us
mirror effect that works online. To add myCameraTextureClient, go to the ‘Actor
Classes’ browser in Unreal Editor, select myCameraTextureClient from the path:

Actor\Info\CameraTextureClient\myCameraTextureClient

9.1.3 Obstacles and Victims
To get high fidelity simulation, we recommend using Karma objects as the

obstacles. The example of adding Karma objects in a map can be found at UDN:

 31

Karma Colosseum
(http://udn.epicgames.com/Content/ExampleMapsKarmaColosseum).

Victims are another type of objects we may need to put into the map.
Victims are the special objects that can implement some actions. The victim
model built in USARSim can be loaded from Unreal Editor. To load it, please
open the ‘Actor Classes’ browser and select the USARVictim from the following
path:

Actor\Pawn\UnrealPawn\xIntroPawn\USARVictim

After put it on the map, you can

1) Set the mesh

The default mesh is ‘ Intro_gorgefan.Intro_gorgefan’ . To change the
mesh, double click the victim to pop up the ‘USARVictim Properties’ .
Then, open the ‘Display’ category. Changing the ‘Mesh’ item in this
category will set the victim’s mesh.

2) Specify the actions

In the ‘USARVictim Properties’ , under the ‘Victim’ category is the
parameters that specify the victim’s action. These parameters are:

AnimTimer Sets how quickly the victim moves. Low value means a

slow action.
HelpSound Sets the sound the victim can play

Segments Specifies how the body segment moves. You can set at
most 8 segments. For every segment, you can define an
action. The segment will move from the initial pose to
the final pose with the specified move rate. The action
definition parameters are:

InitRotation The initial rotation (pitch, yaw, and
roll in integer. 65535 means 360
degree) of the segment.

FinalRotation The final rotation (pitch, yaw and roll
in integer. 65535 means 360 degree)
of the segment.

PitchRate The move amount from current pitch
angle to the next pitch angle. Large
PitchRate means tilt quickly.

YawRate It’s the same as PitchRate except that
it defines the yaw angle.

RollRate It’s the same as PitchRate except that
it defines the roll angle.

Scale The scale of this segment. ‘0’ will
hide this segment. Since there is
hierarchical relationship in the
skeletal system. This scale value will

 32

affect other segments under it. For
example, hips will affect thigh, shine
and foot.

SegName The name of the segment. Different
skeletal meshes may have different
name. You can use the ‘Animations’
browser to view the bone name. An
example in showed in Figure 20.

Figure 20 Skeletal bones name

More details about skeletal mesh, please visit:
UDN: AnimBrowserReference

(http://udn.epicgames.com/Content/AnimBrowserReference)
UDN: UWSkelAnim2

(http://udn.epicgames.com/Technical/UWSkelAnim2)
After you set the actions, the victim will not move immediately. In

Unreal Editor, every thing is static. To let them to be active, you need to
play the map.

As we know, there is a bug in Unreal engine. Some meshes may play
their default animations when your viewpoint is far away from the
victim.

NOTE: There is hierarchical relationship in the skeletal system. Changing one scale value
may affect other segments under it. For example, hips will affect thighs, shines
and feet.

9.2 Build your sensor

Before build your sensors, you need to understand Unreal Script and the client/server architecture of
Unreal engine. The following resources may be helpful to you:

 33

UDN: UnrealScriptReference (http://udn.epicgames.com/Technical/UnrealScriptReference)

UnrealWiki: UnrealScript Topics (http://wiki.beyondunreal.com/wiki/UnrealScript)

Unreal Networking Architecture (http://unreal.epicgames.com/Network.htm)

9.2.1 Overview
In USARSim, all sensors are inherited from Sensor class. Sensor class

defines the interface that the robot model can interact with. We use hierarchical
architecture to build the sensors. The hierarchy chart is showed below.

 Sensor

Range Sensor Sound Sensor HumanMotion
Sensor

RangeScanner
Sensor

Figure 21 Sensor Hierarchy Chart

9.2.2 Sensor Class
The Sensor class is the ancestor of all the sensor classes. It takes care

creating the sensor, mounting itself on the robot and returning sensor data to the
robot. The details about Sensor classes are explained below:

Attributes:
var string SenName; // the sensor name
var string SenType; // the sensor type
var config bool HiddenSensor; // variable indicts whether show the

// sensor in Unreal
var config InterpCurve OutputCurve; // the distortion curve
var config float Noise; // the random noise amount
var vector myPosition; // the mounting position
var rotator myDirection; // the mounting direction

Methods:

function SetName(String SName) // set the sensor name
function Init(String SName, Actor parent, vector position, rotator

direction) // mounting the sensor
function String GetData() // the interface that send sensor data to robot
function String GetType() // return the sensor type

 34

9.2.3 Writing your own sensor
Your sensor should extend from Sensor class. Usually, you only need to

override the GetData method. In this method you return the sensor data in string.
When you generate the sensor data, you also may need the variable myPosition
and myDirection. Although these are Noise and OutputCurve parameters in
Sensor class, it does nothing about the noise data simulation and data distortion
simulation. It’s your responsible to simulate them in the GetData method.

9.3 Build your robot

Usually, building a robot involves a lot of programming, deeply understanding Unreal network
architecture and the background knowledge of mathematic and mechanic. It takes you a lot of time in
programming and debugging. To facilitate the robot building, we build a general robot model to help users
build their own robot. In the robot model, every robot are constructed by:

• Chassis: the chassis of the robot.
• Parts: the mechanic parts, such as tire, linkage, camera frame etc., that

construct the robots.
• Joints: the constraints that connect two parts together. In the robot model,

we use Car Wheel Joint.
• Attached Items: the auxiliary items, such as sensors, headlight etc,

attached to the robot.

A chassis can connect to multiple parts through joints. However, one part only can has one joint. The
attached items can be attached to either chassis or part. The chassis or part can has multiple attached items.

The working flow of building a robot is building geometric model for all the
objects that construct the robot. Then create a new robot class that extends from
KRobot. In this class you set the physical attributes of the robot instead of program.
And you also need to configure how the chassis, parts and auxiliary items are
connected to each other. At last, if you want to add some new features not included in
the robot model, you will do some programming work.

9.3.1 Step1: Build geometr ic model
Essentially, this step is the same as building your own arena. Please refer

section 9.1.1 to learn how to build static mesh. One thing we want to emphasize
here is that the orientation of the geometric model is very important. You must let
the X-axis of the model point to the head. It’s the same for Y and Z axes.
Incorrect axis will bring you incorrect pitch, yaw and roll angle.

NOTE: Make sure the geometric model has the correct x-axis and y-axis. This will affect
the attitude data.

9.3.2 Step2: Construct the robot

9.3.2.1 Create the robot class
At first you need to create a robot class that extends the KRobot. The

class should look like:
class robot_class_name extends KRobot config(USAR);

 35

defaultproperties
{
 //propertise
}
where robot_class_name is the name of your class.

9.3.2.2 Prepare the attr ibutes and objects used for you robot
In the defaultproperties block of the class, you can set the attributes of

the robot. The attributes are:

MotorTorque The default motor torque. Default value is 20.
ChassisMass The mass of the chassis Default value is 1.0.

StaticMesh The static mesh for the chassis. The format looks like:
StaticMesh'your_mesh_name'

DrawScale The scale of the static mesh. Default is 0.3
DrawScale3D The scale in X, Y and Z axes.

KParams The Karma physical parameters of the chassis. It’s a
KarmaParams object. Details please read the UDN:
KarmaReference
(http://udn.epicgames.com/Content/KarmaReference).

Similar to chassis, every part can has its own Karma physical

parameters. Multiple parts can share the same KarmaParams object. These
KarmaParams can be defined here.

Besides these properties, you also can set steering and tire parameters
for the robot. These parameters will affect all the joints and tires. Usually you
needn’ t change them. In case you want to change them, we list all the
parameters below.

Name Descr iption Default

value
SteerPropGap The proportional gap used for steer speed

control.
1000.0

SteerTorque The torque applied to the steer 1000.0
SteerSpeed The steering speed 15000.0

SuspStiffness Stiffness of suspension springs 150.0
SuspDamping Damping of suspension 15.0

SuspHighLimit The highest offset from the suspension
center in Karma scale, which is 1/50th of
Unreal scale.

1.0

SuspLowLimit The lowest offset from the suspension
center in Karma scale, which is 1/50th of
Unreal scale.

-1.0

TireRollFriction Roll friction of the tire 5.0
TireLateralFriction Lateral friction of the tire 2.5

TireRollSlip Maximum first-order (force ~ velocity) 0.06

 36

slip in tire direction
TireLateralSlip Maximum first-order (force ~ velocity)

slip in sideway direction
0.04

TireMinSlip The minimum slip in both direction 0.001
TireSlipRate The amount of slip per unit of velocity 0.007
TireSoftness The softness of the tire 0.0

TireAdhesion The stickyness of the tire 0.0
TireRestitution The bouncyness of the tire 0.0

TIPS: Low TireSlipRate and high friction give the tire high climbing capability.

Before we connect all the parts together, we still need to prepare the

parts. There are two kinds of part.
One is KDPart that is a normal Karma object. It’s used to simulate the

parts like linkages, camera frames etc. Usually, you needn’ t build your own
part class.

Another kind of part is tire. All tires extend from KTire. There is a
limitation in the general robot model that it cannot set the tire collision from
the configuration. The Karma collision use the scale parameter statically
defined in the defaultproperties block. You can change the DrawScale after
the object is created. However, this will not affect the collision used by
Karma. To my knowledge, there is no way to dynamically change the scale
used by Karma. Therefore, for every tire uses different static mesh scale, you
must build a tire class for it. In the tire class, you define the DrawScale in the
defaultproperties block. All the tire classes extend from KTire or BCTire. The
only difference between KTire and BCTire is that BCTire defined some
parameters such as the collision and KarmaParams parameters for you. If your
tire class extends from BCTire, you needn’ t define them again. In the class
you only need to add a line in defaultproperties block to define the DrawScale.

NOTE: You cannot set Tire scale in the configuration. It doesn’ t really work. The
solution is creating your own tire class that extends from BCTire. In the class
you specify the scale in the defaultproperties block.

9.3.2.3 Connect the par ts
After we setup all the attributes, we can use the part-joint pairs to

connect the chassis and parts. In the part-joint pair we define the part and how
it is connected to another part through car-wheel joint. A car-wheel joint
connects two parts by two axes. One is the spin axis (hinge axis in Figure 22)
that the part can spin around. Another is the steering and suspension axis
(Steering Axis in Figure 22) that the part can steer around and travel along.

 37

Figure 22 Car wheel joint

 The part-joint pair is a structure defined below:
struct JointPart {
 // Part
 var() name PartName;
 var() class<KActor> PartClass;
 var() StaticMesh PartStaticMesh;
 var() KarmaParamsRBFull KParams;
 var() float DrawScale;
 var() vector DrawScale3D;
 // Joint
 var() class<KConstraint> JointClass;
 var() bool bSteeringLocked;
 var() bool bSuspensionLocked;
 var() float BrakeTorque;
 var() name Parent;
 var() vector ParentPos;
 var() rotator ParentRot;
 var() vector ParentAxis;
 var() vector ParentAxis2;
 var() vector SelfPos;
 var() vector SelfAxis;
 var() vector SelfAxis2;
} ;

where

PartName The name of the part
PartClass The part’s class name. It can be

Class'USARBot.KDPart' or the tire’s class name.
PartStaticMesh The static mesh of the part

Kparams The KarmaParams you defined in last section for the
part.

DrawScale The scale of the static mesh

 38

DrawScale3D The scale along X, Y and Z axes of the static mesh
JointClass The joint’s class name. It should be:

class'KCarWheelJoint'
bSteeringLocked Indicates whether steering is locked.

bSuspensionLocked Indicates whether suspension is locked.
BrakeTorque The brake torque applied when we brake the joint.

Parent The part or chassis that is part is connecting. NOTE:
the part must have already been defined.

ParentPos The position where the joint connect the parent.
ParentRot The joint rotation relative to the parent. Right now,

we don’ t use it.
ParentAxis The steering axis relative to the parent

ParentAxis2 The spin axis relative to the parent
SelfPos The position where the joint connect the part

SelfAxis The steering axis relative to the parent
SelfAxis2 The spin axis relative to the parent

The order you define the part-joint pairs is important. Since the parent

in the part-joint pair must already be defined, you need to define the parent
before the part. You also can define these part-joint pairs in the usar.ini file
(you may need to create the robot section by yourself). Using usar.ini file, you
needn’ t compile your class after you changed something. However, there is
one issue you need to know:

The KarmaParams must be defined in the defaultproperties block. And
it must be used in the defaultproperties block at least once. Only with this, can
you use the KarmaParams in the INI file. Otherwise, Unreal cannot recognize
it.

NOTE: Define KarmaParams in the defaultproperties block and use it in the block at least
once.

You may find that it’s not easy to know the joint position relative to the

parent and the part. One way to help you figure out these values is using the
Unreal Editor. At first, you put all the chassis and parts in the map in the draw
scale you want. Then you assemble them together in the map. Using some
simple geometric objects to represent the joints, you can put them on the
connection position you want. You also may need to assign a name to every
object to help you distinguish them. After that, you can export the map as a
t3d file. In the t3d file, you will find every object’ s position. By subtracting
the parent or part’s position from the joint position, you will get the accurate
relative position.

TIP: Assembling the robot in Unreal Editor can help you calculate the relative position.

 39

Like the real mechanic world, improper mechanic structure can cause
the robot to be unstable. When you create the robot, make sure your geometric
model is correct. Especially, you need to check the model whether it has the
correct mass distribution. In some case, you may need to specify the mass
center offset in the KarmaParams. When you robot is unstable, try to add the
part one by one. This can help you figure out which part causes the problem.

TIP: Specify the mass center offset in the KarmaParams can help you simulate the mass
distribution.

9.3.2.4 Mount the auxiliary items
After you created the robot, you can mount other items on it. To mount

an item, please use the following data structure:

struct sItem {
 var class<Actor> ItemClass;
 var name Parent;
 var string ItemName;
 var vector Position;
 var rotator Direction;
} ;

 where

ItemClass The class used to create the item
Parent The object where the item will mount

ItemName The name assigned to this item
Position The mounting position relative to its parent

Direction The mounting direction relative to its parent

9.3.3 Step3: Customize the robot (Optional)
After finished the previous two steps, you robot should work now. You

should be able to use the DRIVE command to control every joint and you also can
get the sensor data from the robot. To go further beyond this, you can do three
things:

1) Write your own control mode

The general robot mode only supports controlling every joint separately.
However, you can define some control pattern or even control model in your
class.

USARSim uses the ‘DRIVE { Left xxx} { Right xxx} ’ command to
interact with Pyro. The Left and Right means left side and right side wheels
separately. This is an example of control pattern. In the robot class, you can
transfer the left, right parameters into a serial of joint control parameters to

 40

control the wheels. This can be reached by override the “ProcessCarInput()”
function of the KRobot class. In your own ProcessCarInput(), you need to
call the ProcessCarInput() function in KRobot to let your robot interpret the
joint control command. Once you added the left, right parameters
interpretation, your robot should be able to be controlled by Pyro. As an
example, you can open the source code of P2AT to learn how it supports the
‘DRIVE { Left xxx} { Right xxx} ’ command. ‘CAMERA’ command is
another command used to interact with Pyro. You also can learn how to
interpret it in the P2AT.uc file.

2) Add your own commands

Besides supporting the commands used by USARSim, you also can add
your own command. As we mentioned before, the command are came from
Gamebots. A robot connects with Gamebots through its controller whose
class is RemotBot. Every RemotBot is associated with a BotConnection that
keeps listening to TCP/IP socket and parsing the incoming commands. Once
a new command is coming, BotConnection realizes it and gets the value in
the command. Then it sets the corresponding variable in RemotBot to the
coming new value. In your robot class, you only need to check the
RemotBot’s variable to get the command data.

In summary, to add a new command:
1) Add a new variable in RemotBot to store the command’s data.
2) In BotConnection, add your code into the ProcessAction function

to interpret your command and store it in the RemotBots’s
variable.

3) In your robot class, check the RemoteBot’s variable to get the
command and do something you want.

3) Maintain the robot’s state by yourself

Some robots may have special state to maintain, for example, the
following wheel of P2DX robot, the chassis of PER. The state of the
following wheel of P2DX is totally decided by the other two wheels. This is
not included in the general robot model. So you need to maintain its state by
yourself. It’s the same as the chassis of PER. PER’s chassis is controlled by
a differential that force the chassis’s pitch angle is always the average angle
of left and right wheel rocker angles.

To maintain the robot’s state, you need to override the Tick() function.
In every Unreal tick, you update the robot’s state. And you also need to
explicitly or implicitly call the Karma update state function KUpdateState().
You can use the code of P2DX and Rover as example to learn how to
maintain your own state.

At last, besides the three aspects mentioned above, obviously, you con do

anything you want in your robot class.

 41

9.4 Build your controller

The client/server architecture makes it’s easy to build your own control client. You only need to follow
the communication protocol.

10 Bug repor t
mailto:jiw1@pitt.edu

11 Acknowledgements
This simulator was developed under grant NSF-ITR-0205526, Katia Sycara and
Illah Nourkbaksh of Carnegie Mellon University and Michael Lewis of the
University of Pittsburgh Co-PIs. Elena Messina and Brian Weiss of NIST
provided extensive assistance. Joe Manojlovich , Jeff Gennari, and Sona
Narayanan contributed to the development of the simulator. Eric Garcia edited
this document.

