Chapter 1

A BROKER FOR OWL-S WEB SERVICES

Massimo Paolucci, Julien Soudry, Naveen Srinivasan and Katia Sycara
The Robotics Institute

Canegie Mellon University

5000 Forbes ave Pittsburgh, PA USA

paolucci,jsoudry,naveen,katia@cs.cmu.edu

Abstract Brokers are widely used in distributed information systems such as
Multi-agent systems and distributed databases. Yet, there has not been
a detailed analysis of Brokers’ architecture and no general solution has
been proposed on how the Brokers’ tasks have to be accomplished. In
this paper, we provide a detailed analysis of these tasks, and an imple-
mentation based on OWL-S. We show that while OWL-S is adequate to
provide all the information that is needed by the Broker, the straightfor-
ward implementation of the Broker using OWL-S results in a paradoxi-
cal situation. We solve this paradox by extending the Process Modeling
language of OWL-S. Finally, we propose a solution to a number of issues
that arise in the brokered management of the interaction between Web
services such as the abstraction from queries to capabilities required to
solve that query, and management of the knowledge required by the
Broker to control the multi-party interaction.

Keywords: OWL-S, OWL, Brokers, Semantic Web services

Introduction

Brokering is a natural coordination and mediation mechanism that
we often encounter in our daily life. The most striking example of Bro-
kers are stock Brokers that mediate between the stock market and its
investors. Brokers play a role when there is a need to facilitate the
interaction between two or more parties. For example, if two parties
want to communicate, but they do not share a common language, Bro-
kers may provide translation services, or if the two parties do not trust
each other, a Broker may provide a trusted intermediary (e.g. an es-

2

crow service for commercial transactions). Furthermore, Brokers may
provide anonymization for one (or both) of the parties, by mediating
the transaction.

Not surprisingly, Brokers are one of the main discovery and synchro-
nization mechanisms among autonomous agents (Decker et al., 1996;
Wong and Sycara, 2000). Examples include the Open Agent Archi-
tecture Facilitator (Martin et al., 1999) which mediates between OAA
agents that collaborate toward the solution of a problem. Furthermore,
Brokers have been widely used in many agents applications such as in-
tegration of heterogeneous information sources and Data Bases (Lu and
Mylopulos, 2002), e-commerce (Jennings et al., 2000), pervasive com-
puting (Chen et al., 2004) and more recently in coordinating between
Web services in the IRS-II framework (Motta et al., 2003). Finally,
theoretical studies (Decker et al., 1996; Wong and Sycara, 2000) show
analyze trade-offs that result from the use of Brokers. On one side archi-
tectures based on Brokers are centralized and bound to have bottlenecks
and single points of failure. On the other side, Brokers, can perform a
range of coordination activities such as load balance between different
agents, and anonymization where the Broker acts as a proxy of an agent
effectively hiding the provider or the requester of a given functionality.

Because of their mediation and coordination propertie as well as their
wide applicability, Brokers are a natural candidate component for the
Web services infrastructure. The SOAP (Mitra, 2003) specification and
WS Architecture group (WSA) (Booth et al., 2004) specifications have
provisions for intermediaries, but their role is limited to message routing.
Furthermore, WSA assumes the existence of policy enforcing guards and
auditing guards that act as Brokers that verify that the transactions
performed by the agents are consistent with current policies. However,
Brokers with rich functionality of discovery and mediation, are not part
of the Web services infrastructure.

In the current Web services infrastructure, the only component that
is devoted to discovery is UDDI (UDDI, 2000). However, UDDI is a reg-
istry that does not perform any mediation between the requester and the
discovered service provider. A number of services that satisfy a particu-
lar request could be found using UDDI, but then it is up to the requester
to decide which web service to use and how to interact with the selected
provider. The DAML-S/OWL-S Matchmaker (Paolucci et al., 2002)
provides automated semantic matching of service requests to capability
advertisements, but, after the matchmaker returns a list of candidate
providers, the selection of the most suitable service is done by the re-
quester, which can use the DAML-S Virtual Machine (Paolucci et al.,
2003a) to invoke the selected service.

A Broker For OWL-S Web Services 3

In this paper, we provide an analysis of the requirements of a Broker
that performs both discovery and mediation between agents and Web
services. We show that such a Broker performs very complex reasoning
tasks that include (1) the interpretation of the capability advertisements
of service providers; (2) the interpretation of the requesters’ queries that
must be fulfilled by a service provider; (3) finding the best provider
based on the requester’s query; (4) invocation of the selected provider
on behalf of the requester, interacting with the provider as necessary to
fulfill the query, and (5) returning the query results to the requester. The
accomplishment of these tasks requires ontologies to describe capabilities
of Web services, their interaction patterns and the domain they operate
on, and a logic that allows reasoning on those ontologies. Furthermore,
we will provide a description of an implementation of a Broker using
OWL-S (DAML-S Coalition: et al., 2002), a Web services description
language based on OWL (Dean et al., 2004) and the Semantic Web (
Berners-Lee et al., 2001).

The implementation of the Broker also highlights some of the chal-
lenges of the automatic interaction between Web services. The first
overall challenge concerns the selection of a suitable service provider to
fulfill the requester’s query. The requester’s query is a particular in-
stantiation of an input to an invocation of a service (e.g. ”what is the
five day forecast in Pittsburgh”?), while advertisements of Web services
express the capabilities of the Web service; in other words the class of
queries that it can answer (e.g. "I provide a service that gives weather
information”). Therefore, the Broker cannot match directly the query
against its advertisement store, rather the Broker needs first to trans-
form the query into the capabilities requested to answer it, only then the
matching can be effected. How this transformation can be automatically
generated is a big challenge.

The second major challenge for the Broker is the management of the
interaction between the provider and the requester. Ideally, the Broker
may try to act as the provider and present to the requester the same in-
teraction protocol of the provider. Therefore the Broker may forward to
the requester the information coming from the provider, and conversly
forward to the provider the information that it receives from the re-
quester. The problem is that in a Brokered system neither the requester
that addresses a Broker nor the Broker itself know a priori which is a
suitable provider. Hence they do not know what information the Broker
needs to proceed with the transaction, nor what information the Broker
will report to the requiester. It is impossible to specify how a requester
can formulate its query to the Broker nor how the Broker can medi-

4

ate interactions between a requester and a provider whose interaction
protocol is known only at a later stage.

In this paper, we present an approach to the development and imple-
mentation of a Semantic Broker, namely a Broker that performs semantic
discovery and mediation among Web service requesters and providers .
The Broker uses OWL-S to perform its functions. Our approach gives
solutions to the three challenges presented above. The solution necessi-
tates an extension to OWL-S to address the problem of the initial lack of
knowledge of the provider’s Process Model on the part of the requester
and of the Broker.

The rest of the paper is organized as follows. In Section 1, we present
an overview of OWL-S; in Section 2, we provide a detailed analysis of
the Broker, exploring its interaction protocol and the reasoning tasks
that it has to accomplish. In Section 3, we show how OWL-S provides
the information that the Broker needs to perform its tasks. In Section
4, we explore the problems that emerge from describing the Broker with
OWL-S, and we describe the ezec extension of OWL-S. In Section 5, we
describe the basic features of our implementation and provide details on
how we address the reasoning problems of the Broker. At last, in Section
7?7, we conclude.

1. OWL-S

OWL-S is a Semantic Web services description language that enriches
Web services descriptions with semantic information from OWL (Dean
et al., 2004) ontologies and the Semantic Web (Berners-Lee et al., 2001).
OWL-S is organized in three modules: a Profile that describes capabili-
ties of Web services as well as additional features that help to describe
the service. A Process Model that provides a description of the activ-
ity of the Web service provider from which the Web service requester
can derive information about the service invocation. A Grounding that
describes of how abstract information exchanges described in the Pro-
cess Model is mapped onto actual messages that the provider and the
requester exchange.

The role of the OWL-S Profile is to support the requester in (a) dis-
covering suitable providers, and (b) selecting among them. The OWL-S
Profile achieves the first goal, i.e. provider discovery, by prescribing ways
for representing Web service capabilities. The Service Profile fulfills the
second goal, i.e. service selection, by providing for the representation of
additional information about the service, such as information describing
provenance and quality or cost specifications of the Web service.

A Broker For OWL-S Web Services 5

A Web service capability is the description of the service functionality,
i.e. what the service does. For example, the capability of a bookseller,
such as Barnes and Noble, is to sell books. The capability of a Web
service can be viewed in two ways: first as a service category within
an ontology of services (e.g. selling books is-a selling products) or as a
transformation of a set of inputs to a set of outputs (e.g. selling books
transforms the inputs "book title” and "book author” to the output
"book invoice”). OWL-S Profile describes capabilities of Web services
by the transformation that they produce. Besides transforming inputs
into outputs at an information level, invoking a Web service can produce
effects in the real world and need preconditions to be satisfied. For
example, invoking the book selling service and buying a book produces
the effect in the real world that the requester’s credit card gets charged;
a precondition for the invocation of the book selling service is that the
requester has a valid credit card.

In addition to capabilities, an OWL-S Profile provides provenance in-
formation that describes the entity (person or company) that deployed
the service; and non-functional parameters that describe features of the
services such as quality rating for the service. These pieces of informa-
tion help a requester discriminate among different services with similar
capabilities. For example, a requester may prefer a bookseller that has
a Dunn and Bradstreet quality rating.

In order to make its capabilities known to service requesters, a service
provider advertises its capabilities with infrastructure registries, or more
precisely middle agents (Wong and Sycara, 2000), that record which
agents are present in the system. UDDI registries are an example of
a middle agent, with the limitation that it can make limited use of
the information provided by the OWL-S Profile. The OWL-S/UDDI
Matchmaker (Paolucci et al., 2002; Paolucci et al., 2003b) is another
example, which combines UDDI and OWL-S. Finally, the Broker defined
in this paper is another example of a middle agent that performs both
discovery and mediation.

The second module of OWL-S is the Process Model. The Process
Model has two aims: the first one is to show how the provider achieves
its goals, and the second to provide the requester-provider interaction
protocol. The first goal is achieved by allowing the provider to make
public a description of its computation, to the extent that the provider
feels comfortable to do so. The requester-provider interaction protocol is
derived by the processes that the provider performs by locating when the
provider needs information, and what type of information, and where it
sends information, and what type of information.

A Process Model defines a set of concurrent threads of execution.
Each thread is an ordered collection of processes. OWL-S distinguishes
between two types of processes: composite processes and atomic pro-
cesses. Atomic processes correspond to operations that the provider can
perform directly. Composite processes are used to describe collections of
processes (either atomic, or composite) organized on the basis of some
control flow structure. For example, a sequence of processes is defined
as a composite process whose processes are executed one after the other.
Other control constructs supported by OWL-S are conditional expres-
sions, non-deterministic choices between alternative control flows, and
spawning of new concurrent threads. Finally, OWL-S includes looping
constructs like while and repeat-until.

The last module of OWL-S is the Grounding that describes how
atomic processes which provide abstract descriptions of the informa-
tion exchanges with the requesters, are transformed into concrete mes-
sages or remote procedure calls over the net. Specifically, the OWL-S
Grounding is defined as a one to one mapping from atomic processes
to WSDL (Christensen et al., 2001) input and output message specifi-
cations. From WSDL it inherits the definition of abstract message and
binding, while the information that is used to compose the messages
is extracted through the execution of the process model during service
invocation.

Therefore, the Web services philosophy of interaction between a ser-
vice requester and a service provider is that a requester would need to
know the information that a service provider requires at different stages
of the interaction. For example, in industrial standards, the requester-
provider interaction is governed by knowledge of the provider’s Web
services Description (WSD) given in WSDL, and in Semantic Web ser-
vices, the requester-provider interaction presupposes knowledge on the
part of the requester of the Process Model (plus WSD) of the provider.

2. Overview of the Broker

Brokers have been widely applied in many different applications and
domains, therefore, not surprisingly, there are many different definitions
of what a Broker is. We adopt the definition of the Broker protocol based
on (Decker et al., 1996), and graphically summarized in Figure 1.1. Any
transaction involving a Broker requires three parties. The first party is
a requester that initiates the transaction by requesting information or a
service to the Broker. The second party is a provider which is selected
among a pool of provider as the best suited to resolve the problem of
the requester. The last party is the Broker itself.

A Broker For OWL-S Web Services 7

The protocol in Figure 1.1 can be divided in two parts: the advertise-
ment protocol, and the mediation protocol. In the advertisement pro-
tocol, the Broker first collects the advertisements of Web services that
are available to provide their services. These advertisements, shown in
Figure 1.1 by straight thin lines, are used by the Broker to select the
best provider during the interaction with the requester. The mediation
protocol, shown in Figure 1.1 using thick curve lines, requires (1) the
requester to query the Broker and wait for a reply while the Broker uses
its discovery capabilities to locate a provider that can answer the query.
Once the provider is discovered, (2) the Broker reformulates the query
for that provider, and finally queries it. Upon receiving the query, (3)
the provider computes and send the reply to the Broker and finally (4)
the Broker replies to the requester.

Providers

2. Broker

1. Requester query queries

ise
ver
Provider ol

Requester

4. Broker relay 3. Provider
Provider’s answer answers

3

Figure 1.1. The Broker’s Protocol

In general, the execution of the protocol may be repeated multiple
times. For example, the requester may have asked the Broker to book
a flight from Pittsburgh to New York. Since there are multiple flights
between the two cities, the provider may ask the Broker, and in turn the
requester, to select the preferred flight. These interactions are resolved
with multiple loops through the protocol. For example, the Broker trans-
lates the list of flights retrieved by the provider for the requester, through
steps (3) and (4) of the protocol, and then translates the message with

8

the selected flight from the requester to the provider, via steps (1) and
(2) of the protocol. The only exception is that step (1) does not require
any discovery since the provider is already known.

In some cases, the Broker may be able to answer the request of infor-
mation from the provider directly; therefore, it does not have to involve
the requester in the interaction. For example, the requester’s query
may request a seat on the cheapest flight from Pittsburgh to New York.
When the provider reports all flights between the two cities, the Broker
selects the cheapest one and responds directly to the provider without
asking anything to the requester. Following the protocol in Figure 1.1,
these interactions are the result of the inner loop produced by the steps
(3) and (2). The provider sends message (3) and the Broker responds
directly with (2) without contacting the requester.

The protocol described above shows that the Broker needs to perform
a number of complex reasoning tasks for both the discovery and medi-
ation part of its interaction. The discovery task requires the Broker to
use the query to describe the capabilities of the desired providers that
can answer that query, and then match those capabilities with the ca-
pabilities advertised by the providers. During the mediation process,
the Broker needs to interpret the messages that it receives from the re-
quester and the provider to decide how to translate them, and whether it
has enough information to answer directly the provider without further
interaction with the requester. In the next two sections, we will analyze
these reasoning tasks in more detail.

2.1 Discovery of Providers

The task of discovery is to select the provider that is best suited to
reply to the query of the requester. Following the protocol, providers
advertise their capabilities using a formal specification of the set of ca-
pabilities they posses, i.e. the set of functions that they compute. These
capability specifications implicitly specify the type of queries that the
provider can answer.

The discovery process requires two different reasoning tasks. The first
one is to abstract from the query of the requester to the capabilities that
are required to answer that query. The second process is to compare the
capabilities required to answer the query with the capabilities of the
providers to find the best provider for the particular problem.

The first problem, the abstraction from the query to capabilities, is
a particularly difficult one. Capabilities specify what a Web service or
an agent does, or, in the case of information providing Web services,
what set of queries it can answer. For example, the capability of a Web

A Broker For OWL-S Web Services 9

service may be to provide weather forecasting, or sell books, or register
the car with the local department of transportation. Queries instead
are requests for a very specific piece of information. For example, a
query to a weather forecasting agent may be to provide the weather
in Pittsburgh, while a query to a book-selling agent may be to buy a
particular book. Because of their difference, queries and capabilities are
also expressed in very different formats. The task of the Broker therefore
is to abstract from the particular query, to its semantics, i.e. what is
really asked. Finally, the Broker must identify and describe in a formal
way the capabilities that are needed to answer that query.

The second task of the discovery process is to match the capabilities
required to answer the query with the advertisements of all the known
providers. Since it is unlikely that the Broker will find a provider whose
advertisement is exactly equivalent to the request, the matching process
can be very complicated, because the Broker has to decide to what extent
the provider can solve the problems of the requester.

2.2 Management of Mediation

The second reasoning task that the Broker has to accomplish is to
transform the query of the requester into the query to send to the
provider. This process of mediation has two aspects. The first one is the
efficient use of the information provided by the requester to the Broker;
the second one is the mapping from the messages of the requester to
messages to the provider and vice versa.

Since the requester does not a priori know which is the relevant
provider, the (initial) query it sends to the Broker and the query input
that the (selected) provider may need in order to provide the service may
not correspond exactly. The requester may have appended to the query
information that is of no relevance to the provider, while the provider
may expect information that the requester never provided to the Bro-
ker. In the example above, we considered the example of a requester that
asks to book the cheapest flight from Pittsburgh to New York. However,
besides the trip origin and destination, the selected provider may expect
date and time of departure. In the example, the requester never pro-
vided the departure time, and the provider has no use for the ”cheapest”
qualifier. It is the task of the Broker to reconcile the difference between
the information that the requester provided and the information that
the provider expects, by (1) recognizing that the departure time was not
provided, and therefore it should be asked for, and (2) finding a way to
select the cheapest flight among the ones that the provider can find.

10

The other type of inference on the message passing that the Broker
has to perform is the mapping between ontologies and terms used by the
two parties. For example, the requester may have asked for information
on IBM whereas the provider expects inputs in terms of International
Business Machine Corporation. A more complicated mismatch may be
at the level of concepts and their relations in the ontologies used for
inputs and outputs of the provider vis a vis the ontological information
used by the requester. For example, the requester may have asked for
the weather in Pittsburgh, but instead the provider can report only the
weather at major airports. The task of the Broker in this case is to infer
which is the most appropriate airport, and use it in the query to the
provider. Therefore, instead of asking for the weather in Pittsburgh, the
Broker asks the provider for the weather at PIT, where PIT is the code
of the Pittsburgh International Airport.

Finally, the Broker has the non-trivial task of translating between the
different syntactic forms of the queries and replies. The examples that
we discussed above assume semantic mismatches between the different
messages that the Broker has to interpret and send. These messages
have to be compiled in an appropriate syntactic form, and despite their
semantic similarity, the messages could be realized in very different ways.
The task of the Broker is to resolve syntactic differences, and to formu-
late messages that all the parties can understand.

In conclusion, the Broker performs a number of complex reasoning
tasks that range from discovery to the interpretation, translation and
compilation of messages. To accomplish these tasks, the Broker needs
the support of a formal framework that allows complex reasoning about
agents, what they do and how to interact with them. Furthermore, the
Broker needs a way to translate the semantics of the information that it
wants to communicate, into the syntactic form that the provider or the
requester expects.

3. OWL-S Support of Broker’s Reasoning

The OWL-S language and ontology provides constructs to support
the Broker in both discovery and mediation between Web services. The
OWL-S Profile supports the discovery process by providing a represen-
tation of capabilities of Web services and agents. The OWL-S Process
Model and service Grounding provide support for the interaction be-
tween the Broker and the requester and provider of the service.

The discovery process requires a representation of capabilities of provider
services and a representation of the capabilities that are required to an-
swer the query. These capabilities are represented in OWL-S by the

A Broker For OWL-S Web Services 11

service Profile. In addition to the representation of capabilities, the anal-
ysis above showed that the Broker needs an abstraction process from the
query to the capabilities needed to answer it, and a matching mecha-
nism from the capabilities required for the query to the capabilities of
the providers to select the best service provider to answer the query.

A number of capability matching algorithms for OWL-S based Web
services have been proposed (see (Benatallah et al., 2003; Noia et al.,
2003; Li and Horrocks, 2003; Paolucci et al., 2002)) which exploit OWL
ontologies and the related logics to infer which advertisements satisfy a
request for capabilities. These algorithms can be used to solve the second
problem: the matching from the capabilities required for the query to
the capabilities of the providers.

The first problem, the abstraction from the query to the capabilities, is
more complicated. First of all, there is no explicit support in OWL-S for
queries, nevertheless, it is easy to use the OWL Query Language (OWL
QL) (Committee, 2002; Fikes et al., 2003) which relies on the same logics
required by OWL-S. The transformation is still an open problem, which,
to our knowledge, has not been addressed in the literature. In the next
section, we will propose an abstraction algorithm to transform queries
into capabilities.

After selecting a provider, the Broker has access to the provider’s Pro-
cess Model from which it can derive the provider’s interaction protocol
by extracting what information the provider will need, in what order,
and what information it will return. For the rest of the interaction the
Broker acts as the provider’s direct requester. However, this relation is
not straightforward. Since the Broker acts on behalf of the requester,
it must somehow transform the requester’s initial query (and all subse-
quent messages) into a query (or a sequence of queries) to the provider.
This transformation is necessary since the requester does not have di-
rect access to the Process Model of the provider, but interacts with the
provider only through the Broker. We show how this transformation can
be done in Section 5.1.

Furthermore, since the requester initiated its query without having
access to the provider’s Process Model (since the provider was not known
at the time of the requester’s query initiation), the Broker needs to infer
what additional information it needs from the requester. Once it has
done that, it then uses this knowledge to construct a new Process Model.
This new Process Model is presented by the Broker to the requester, not
as the Process Model of the selected provider but as the Process Model
of the Broker. This makes sense since the requester interacts only with
the Broker. The new Process Model indicates to the requester what
information is needed and in what order. How the Broker infers the

12

additional information it needs from the provider and how it constructs
the new Process Model is presented in Section 5.2.

The Service Grounding provides a mapping from the semantic form
of the messages exchanged as defined in the Process Model, to the syn-
tactic form as defined in the WSDL input and output specifications.
The Grounding provides to the Broker the mapping from the abstract
semantic representation of the messages to the syntactic form that these
messages adopt when they become concrete information exchanges. The
Broker uses this mapping to interpret the messages that it receives and
compile the messages that it sends to the requester or to the provider.

4. A Process Model for the Broker

Every interaction between agents using OWL-S must be effected in
accordance with the provider’s Process Model. Interactions with a Bro-
ker are no exception. Since, from the point of view of the requester,
the Broker is the provider, it expects the Broker to publish a Process
Model that is to be used during the interaction. In this section, we show
that the Broker’s Process Model pushes the boundaries of the current
specification of OWL-S.

4.1 The Broker’s Paradox

A requester interacts with the Broker using the Broker’s Process
Model. The Broker’s Process Model should specify how the requester
can submit its query, but it should also allow the requester to provide
any additional information that the Broker needs to interact with the
provider. Since, to the requester, the Broker is a (representative of) the
provider, the Process Model of the Broker should contain the crucial
elements of the Process Model of the provider. However, since the Bro-
ker is unaware of the provider until it has discovered and selected the
provider based on a requester’s query, the Broker is faced with a chal-
lenge: it must publish a Process Model that depends on the provider’s
Process Model, but the provider is not known until the requester reveals
its query. On the other hand, the requester cannot query (interact with)
the Broker until the Broker publishes its Process Model. The result is
a paradoxical situation in which the Broker cannot reveal its Process
Model until it receives the query of the requester, but cannot receive the
query from the requester until it publishes its Process Model.

Essentially, the Broker’s paradox is due to the fact that the discovery
of the provider depends on the requester’s query, while the rest of the in-
teraction between the requester and the Broker depends on the provider
selected. Ultimately, the Broker paradox results from an inflexibility of

A Broker For OWL-S Web Services 13

Sequence

GetQuery Discover exec

= L e

Figure 1.2. Broker’s Process Model

the OWL-S specification of service invocation, which requires the speci-
fication of the Process Model before the interaction, and does not allow
any means to modify the Process Model during the interaction.

4.2 Extending OWL-S Process Model

The solution of the Broker’s Paradox that we propose requires an
extension of the specification of the OWL-S Process Model to allow the
flexibility to dynamically modify an agent’s Process Model during the
interaction. As a result, the Broker can provide an initial, provider-
neutral, Process Model to the requester, and then modify it consistently
with the requirements of the Process Model of the provider. The changes
are then adopted by the requester in its interaction with the Broker.

To implement this solution, we propose to extend the OWL-S Model
Processing language by adding a new statement, that we call ezec. The
erec statement takes as input a Process Model and executes it. There-
fore, the Broker can compile a new Process Model, return it as an output
of one of its processes, and then use the exec statement to turn the new
Process Model into executable code that specifies the Broker’s new in-
teraction protocol.

The provider-neutral Process Model of the Broker is shown in Figure
1.2. It shows that the Broker performs a sequence of three operations,
where the first operation is GetQuery in which the Broker gets the query
from the requester. The second operation is Discover in which the Broker
uses its discovery capabilities to find the best provider. The result of the
Discover process is a new Process Model that depends on the provider
found. Finally, the Broker performs the ezec operation which passes

14

control to a new Process Model. This change of control is shown in the
figure by the three small rectangles that display processes that will be
run as a consequence of the exec.

The use of the exec solves the Broker’s Paradox by removing the
inflexibility of the OWL-S Process Model. The ezec operation allows the
separation of service discovery from service invocation and interaction.
First the discovery is completed, then the interaction, which depends on
the discovered provider, is initiated through the ezec.

One important question that is left unanswered is whether there is a
clever way to use OWL and OWL-S that does not require the extension
of the language that we propose. Unfortunately, such an extension does
not exist, because neither OWL nor OWL-S provides a way to transform
a term into a predicate of the logic, which is the essential step that is
performed by the ezec.

5. Implementation

We have implemented a prototype of a Broker that makes use of OWL-
S with the ezxec extension described above to mediate between agents
and Web services. We based our implementation of the Broker on the
OWL-S Virtual Machine (OWL-S VM) (Paolucci et al., 2003a), which
is a generic OWL-S processor that allows Web services and agents to
interact on the basis of the OWL-S description of the Web service and
OWL ontologies. In the implementation of the Broker, we extended
the OWL-S VM to include the semantics of the exec. Furthermore, we
developed the reasoning that allows the Broker to perform discovery and
to mediate the interaction between the provider and the requester.

In this section, we analyze how we implemented the different aspects
of the Broker. We will first discuss the implementation of the discovery
process, and then we will analyze the modification of the interaction
protocol that allows the Broker to mediate between the provider and
the requester. Finally, we will discuss the use of the OWL-S VM in
the implementation that allows us to actually mediate between the two
parties.

5.1 Supporting Discovery

The Broker expects from the requester a query in OWL-QL format (
Fikes et al., 2003), where the predicate corresponds to a property in the
ontology, the terms in the query are either variables, or instances that
are consistent with the semantic type requirements of the predicate.

The discovery process takes as input the query of the requester and
generates as output the advertisement of a provider (if any is known

A Broker For OWL-S Web Services 15

to the Broker) that can answer the query. The discovery process has
three steps. First the Broker abstracts from the query to the capabil-
ities that are required to answer that query, thus constructing a ser-
vice request. Second, the Broker finds appropriate providers by match-
ing the capabilities requested with the capability advertisements by the
providers. Third, the Broker select the most appropriate provider among
the providers that match the capabilities requested. The matching of the
service request against the advertised capabilities was implemented us-
ing the OWL-S matching engine reported in (Paolucci et al., 2002) and
(Paolucci et al., 2003b).

The automatic abstraction from the requester’s query to a service
request is, to our knowledge, an unexplored problem. The abstraction
process must respect the constraints of the OWL-S discovery process,
namely generation of an OWL-S service profile where the service inputs
and outputs reflect the semantic content of the query. The abstraction
procedure that we implemented distinguishes between variables, and the
terms that are instantiated in the query. Since the result of the query
should be an instantiation of the variables, ideally, the selected provider
agent would take as inputs the instantiated terms and return as output
an instantiation for the variables.

1 set V = set of variables in the query
set T= set of instantiated terms in the query

set I= abstraction of each term in T to its immediate class

= W N

use predicate definition in the ontology to abstract variables in V
to their class

ot

set O= abstraction of each variable in V to its class

6 generate a service request with input I and outputs O

Figure 1.3. The abstraction algorithm

The instantiation algorithm follows the 6 steps listed in Figure 1.3.
In the steps 1 and 2, terms from the query are extracted distinguishing
between variables and instantiated terms. In step 3, the set of inputs
of the service request is derived by abstracting the instantiated terms
to their immediate class. For instance, if one term were Pittsburgh,
it would be abstracted to City (assuming the presence of a location
ontology). Step 4 is needed to handle variables. In OWL-QL variables

16

are of class Variable, but there is no constraint on the type that they
have to assume. We use the definition of the predicate in the ontology
to constrain the type of the values of the variable to the most restrictive
class of values that they can be assigned to. In step 5, we use the
abstraction in step 4 to generate the set of outputs 0. Finally, in step 6,
the service request is generated by specifying the inputs and the outputs.

5.2 Supporting Mediation

After the Broker has selected a provider, it must mediate between the
provider and the requester. The mediation process depends on the Pro-
cess Model of the provider which specifies what information is required
and when. In theory, the Broker may just present to the requester the
Process Model of the provider and limit mediation to message forward-
ing. But this solution is unacceptable, since it ignores the information
that the requester already provided to the Broker. For example, the
requester may ask the Broker to book a trip to Pittsburgh. The Bro-
ker may find a Travel Web service that asks for departure and arrival
location. The task of the Broker is to recognize that arrival location
information has already been specified so the Broker needs to ask the
requester for the departure location only.

1 KB= knowledge from query

2 I= input of process

3 foriel

4 select k from KB with the same semantic type of I
5 if k exists

6 remove i from I

Figure 1.4. Algorithm for pruning redundant information

The algorithm for pruning redundant information is shown in Figure
1.4. It hinges on removing from processes inputs that should be provided
by the requester, but that can be filled by the information the Broker
already has. First, the Broker records the information provided by the
query in a KB (step 1), and the inputs of the process (step 2). Next for
each input i, the Broker looks in the KB for information that it can use
in place of i. If any is found, i is removed from the inputs of a process.

A Broker For OWL-S Web Services 17

For example, suppose that the requester’s query asking for the book-
ing of a trip used ArrivalLocation=Pittsburgh to indicate the des-
tination of the travel. Furthermore, suppose that the Process Model
requires two inputs of type DeparturelLocation and Arrivallocation.
Our algorithm would generate a Process Model in which the Broker
asks only for first input (the departure city), while the second input
Arrivallocation will be pruned by the algorithm because it has the
same semantic type of the information provided in the query.

5.3 Managing Message Passing

The last aspect of the Broker is to instantiate a message passing mech-
anism that allows consistent data transfer between the provider and the
requester. The architecture of the Broker is shown in Figure 1.5. To
interact with the provider and the requester the Broker instantiates two
ports: a server port for interaction with the requester (since the Broker
acts as a provider vis a vis the requester) and a client port for inter-
action with the provider (since the Broker acts as a client vis a vis
the provider). The functionalities of the server port are described us-
ing OWL-S. Specifically, the Broker exposes to the requester its Process
Model, Grounding and WSDL specification. The client (requester) uses
these descriptions to instantiate an OWL-S Virtual Machine to interact
with the Broker. Since the provider-neutral Process Model exposed by
the Broker makes use of the ezec extension, the OWL-S Virtual Machine
used by the requester also implements the axioms that implement the
execution semantics of exec. The client port is also implemented as an
OWL-S Virtual Machine that uses the Process Model, Grounding and
WSDL description of the provider to interact with it.

The reasoning of the Broker happens in the Query Processor (see
Figure 1.5) that is responsible for the translation of the messages be-
tween the two parties and for the implementation of the algorithms in
Figures 1.3 and ?7. Specifically, the Query Processor stores informa-
tion received from the query in a Knowledge Base that is instantiated
with the information provided by the requester. Furthermore, the Query
Processor interacts with the Discovery Engine, which provides the
storage and matching of capabilities, when it receives a capability ad-
vertisement and when it needs to find a provider that can answer the
query of the requester.

6. Conclusion

Despite the wide use of Brokers in different aspects of distributed
systems, and despite the many uses Brokers can have in the discovery and

18

Broker
Ty
Requester “ Provider

o, Server Port o, Server Port

7 by

S %\‘P
% Query
| Pracessidodel [Processor | M Processhdodel
Client Grounding Client Grounding
Port WSDL I Port WSDL
Matching
Engine
Advertisement DB

Figure 1.5. Broker Architecture

mediation of Semantic Web services, no detailed analysis of what tasks
a Broker should perform to support the interaction has been proposed.
One contribution of this paper is to provide such as analysis. In the
course of this analysis, a few challenges were uncovered, and solutions
for these challenges were presented.

The first challenges is the ” Broker’s paradox”, namely that the Broker
cannot publish a Process Model that is based on a yet unknown provider
before it receives a request query, and the requester cannot send a query
until it knows the Broker’s process Model. This paradox arises from the
OWL-S Web service interaction specification that requires a declarative
specification of a process model to guide the requester and provider
interaction. To address the Broker paradox, we extended the OWL-
S Process Modeling language with an exec operation that allows the
dynamic modification of the Broker’s Process Model during its execution
to include Process Models of dynamically discovered new parties.

A second set of challenges derives from the management of the media-
tion between the provider and the requester. To address these challenges,
we developed a method for abstracting from a service query to a service
request. We proposed an algorithm to address this issue. Furthermore,
we used the knowledge provided by the requester during the interaction
with the provider.

Crucially, the issues emerging with the mediation between the provider
and the requester are not unique to Web services Brokering, rather they

REFERENCES 19

comes up in web services composition as well. In the context of Web
service composition, a planner may issue a goal that it wants to subcon-
tract. The task of the Web service is first to abstract from the specific
goal to a capability description of a provider that can solve the goal, then
use its current knowledge, and the goal, to interact with the provider.
In current research, we are looking to integrate our work in the context
of Brokering to automated composition.

Acknowledgments

We would like to thank Khalid El-Arini for his contribution to early
development of this work. This work has been was funded by the De-
fense Advanced Research Projects Agency as part of the DARPA Agent
Markup Language (DAML) program under Air Force Research Labora-
tory contract F30601-00-2-0592 to Carnegie Mellon University. .

References

Benatallah, B., Hacid, M.-S., Rey, C., and Toumani, F. (2003). Request
rewriting-based web service discovery. In Proceeding of the Second
International Semantic Web Conference, Sanibel Island, F1, USA.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web.
Scientific American, 284(5):34-43.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris,
C., and Orchard, D. (2004). Web services architecture.

Chen, H., Finin, T., and Joshi, A. (2004). Semantic web in the context
broker architecture. In Proceedings of the IEEE Conference on Per-
vasive Computing and Communications (PerCom), Orlando, Florida,
USA.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001).
Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.

Committee, D. J. (2002). DAML query language (DQL) abstract speci-
fication.

DAML-S Coalition:, Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O.,
McDermott, D., Martin, D., Mcllraith, S., Narayanan, S., Paolucci,
M., Payne, T., and Sycara, K. (2002). DAML-S: Web Service De-
scription for the Semantic Web. In First International Semantic Web
Conference.

Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J.,
Horrocks, 1., McGuinness, D. L., Patel-Schneider, P. F., and Stein,
L. A. (2004). Owl web ontology language reference.

20

Decker, K., Sycara, K., and Williamson, M. (1996). Matchmaking and
brokering. In Proceedings of the Second International Conference on
Multi-Agent Systems (ICMAS-96). The AAAI Press.

Fikes, R., Hayes, P., and Horrocks, I. (2003). OWL-QL - a language
for deductive query answering on the semantic web. Technical Report
KSL-03-14, Technical Report Knowledge Systems Laboratory, Stan-
ford University.

Jennings, N. R., Faratin, P., Norman, T. J., O’Brien, P., and Odgers, B.
(2000). Autonomous agents for business process management. Inter-
national Journal of Applied Artificial Intelligence, 14(2):145-189.

Li, L. and Horrocks, I. (2003). E-commerce: A software framework for
matchmaking based on semantic web technology. In Proceeding of
the Twelfth International Conference on World Wide Web, Budapest,
Hungary.

Lu, J. and Mylopulos, J. (2002). extensible information broker. Interna-
tional Journal on Artificial Intelligence Tools, 11(1):95-115.

Martin, D., Cheyer, A., and Moran, D. (1999). The Open Agent Ar-
chitecture: A Framework for Building Distributed Software Systems.
Applied Artificial Intelligence, 13(1-2):92-128.

Mitra, N. (2003). Soap version 1.2 part0O: Primer.

Motta, E., Domingue, J., Cabral, L., and Gaspari, M. (2003). Irs-ii: A
framework and infrastructure for semantic web services. In Second In-
ternational Semantic Web Conference, Sanibel Island, Florida, USA.

Noia, T. D., Sciascio, E. D., Donini, F. M., and Mongiello, M. (2003). A
system for principled matchmaking in an electronic marketplace. In
Proceeding of the Twelfth International Conference on World Wide
Web, Budapest, Hungary.

Paolucci, M., Ankolekar, A., Srinivasan, M., and Sycara, K. (2003a).
The daml-s virtual machine. In Second International Semantic Web
Conference, Sanibel Island, Florida, USA.

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. (2002). Se-
mantic matching of web services capabilities. In First International
Semantic Web Conference.

Paolucci, M., Sycara, K., and Kawamura, T. (2003b). Delivering seman-
tic web services. In Proceeding of the Twelfth International Conference
on World Wide Web, Budapest, Hungary.

UDDI (2000). The UDDI Technical White Paper. Technical report, OA-
SIS.

Wong, H.-C. and Sycara, K. (2000). A Taxonomy of Middle-agents for
the Internet. In ICMAS’2000.

