
Abstract
Designers of digital applications that deal with complicated 
infrastructures in the physical world often deal with the 
formidable challenges of working in a specific place. During 
development and testing, the designer must constantly move 
around the physical space to debug or test new interactions. 
In outdoor settings, factors such as weather, poor work 
ergonomics, and the lack of power and networking are 
serious impediments for designers. Our strategy is to use 
a flexible capture/playback infrastructure, which is tightly 
integrated into a design environment for prototyping physical 
applications. We are able to capture the sensor data necessary 
to design and test applications that can then be easily deployed 
to the real environment. We will demonstrate this approach 
within the context of DART (the Designer’s Augmented Reality 
Toolkit) by showing how augmented reality applications (such 
as mocking up the placement of information displays) can be 
quickly prototyped and tested using captured data sets. The 
capture/playback method breaks the requirement that sensors 
be used synchronously, in real-time, in the actual location.  
The flexible programming environment of Director, used by 
DART, will allow us to demonstrate this design process to 
conference attendees.

Introduction
One of the main attractions of Augmented Reality (AR) (as 
well as other off-the-desktop computing paradigms, such as 
wearable and ubiquitous computing) is the tight integration 
of computer-generated material with the physical world.  
For designers trying to work with AR, this binding between 
physical and virtual worlds means that the programs they 
are creating are driven largely by data that is sensed about 
the world, such as the location of the user and where they 
are looking, user gesture or speech, and so on.  This reliance 
on sensor data means that, from early design conception 
through development and user-testing, the designer needs to 
be physically present in the target environment if they want 
to see how the application “really” works. The need to work 
with realistic, live data in the target space seriously hampers 
the development of experiences that mix  physical  and virtual 
worlds.

The need to work in the target environment has often been a 
source of frustration for us. This has been especially true of 
the outdoor experiences we have built, such as campus tours 
and our more recent dramatic experiences in historic sites. 
Over the past four years we have been teaching a class on 
AR Experience Design to Computer Science and New Media 
students; the difficulties of our collaborators and students has 
prompted us to take a serious look at the underlying problems 
faced by designers prototyping AR experiences. The result of 
our initial work on this problem is the Designer’s AR Toolkit 
(DART), a collection of AR experience design tools built on 
top of Macromedia Director. (DART is designed to solve a 
variety of problems encountered by non-technical designer’s 
when trying to use AR, ranging from the difficulty of the 
technology to the complexity of the content—for an overview 
of DART, see [2]).  This demonstration focuses on a specific 
feature of DART designed to free an AR developer from some 
of the constraints of working with the physical world:  the 
capture and playback of the inputs to an AR experience and 
modular application prototyping on top of the captured input.  
In general, we seek to understand the process followed by 
designers in order to allow them to prototype applications for 
a physical space with different strategies.  

The basic idea of this work is straightforward: allow a 
designer to easily capture all of the inputs (e.g., live video 
and sensor data) to an experience, and to replay them in 
the development environment so they appear live to the 
application.  In theory, this should allow designers to work on 

Prototyping Applications For the Physical World Using 
Integrated Capture/Playback Facilities

Steven Dow1, Blair MacIntyre1, Maribeth Gandy2 and Jay David Bolter3

1College of Computing, 2Interactive Media Technology Center 
3School of Literature, Communication and Culture

GVU Center, Georgia Institute of Technology
Atlanta, GA 30332, USA

{blair, steven}@cc.gatech.edu, maribeth.gandy@imtc.gatech.edu, jay.bolter@lcc.gatech.edu

(a) Working with recorded data (b) Working live

Figure 1: (a) Working with captured data in a lounge near our lab, 
(b) dealing with live sensors in Oakland Cemetery. (photograph 
courtesy of J. Cothran, J. Hoffman, Z. Pousman and M. Norton)  



the experience’s content, seeing how it really looks and works 
in the target space, without having to be there.   While the 
idea of working with captured data is not new (the computer 
vision and computational perception communities have been 
using captured data sets to design, debug and compare new 
algorithms for many years), the integration of these facilities 
into an end-user design and development environment presents 
new opportunities for radically changing the way in which 
MR, AR and UbiComp systems are designed and built.

System Description
Macromedia Director is a powerful, flexible multimedia-
authoring environment built around an object-oriented 
computer programming language called Lingo.  Director 
utilizes the notion of a stage (where content is placed), 
multiple casts (where all content elements are stored, 
including images, video, 3D content, Lingo scripts, text data 
and so forth), a score (the time line of the experience) and 
sprites (cast members that have been placed on the stage or 
in the score).  

Our work on DART integrates various sensors into Director 
through an external library (or Xtra).  The Xtra, written in 
C++, handles the interfaces with video cameras (we support 
DirectShow and several custom capture libraries), marker 
tracking on video frames (currently using ARToolkit [1]), and 
a large collection of trackers and sensors (via VRPN [4]).  This 
functionality is afforded through modular behavior scripts, 
which are structured to take advantage of the score’s drag and 
drop ability. Scripts, such as Actors, Events, Physics, etc, are 
building blocks for interactive, multi-state, AR experiences.  
These DART building blocks can be stacked on the score in 
Director, configured using property windows, and manipulated 
visually to quickly adjust the flow of an application.  

There are four scripts that control the capture/playback of video 
and tracking information:  CaptureVideo, CaptureTracker, 
PlaybackVideo, and PlaybackTracker.  These are managed 
on the score in Director so that a user can determine which 
trackers to capture and for what length of time.  All of the data 
is saved into cast libraries, where it can be viewed and modified 
if necessary. All captured data is stored in independent cast 
members, but has synchronized timestamps stored as offsets 
from the capture start time. Any VRPN devices (e.g., Buttons, 
Analog, shared memory objects, etc), ARToolkit reports, or 
other application specific sensor data can be captured.

The obvious reason for integrating capture/playback tools into 
a prototyping environment is to facilitate offsite application 
development using time-synchronized sensor data (onsite  
development is also more ergonomic since the designer 
doesn’t have to repeatedly move around a space to test ideas).  
Additionally, integrated capture/playback facilities allow 
other strategies to improve the design process:

• Captured data sets appear no different than live data to the 
application. This makes quick substitution (particularly 

within the modular, drag & drop environment of Director) 
of pre-captured data sets for live data simple.

•  Specific sensor input can be used repeatedly, so that ap-
plications can be incrementally developed, debugged, 
evaluated against other designs on the exact same input, 
and demonstrated  to collaborators in any location.  

•   The captured data does not have to be played back at the 
original speed.  A key to supporting capture/playback is 
a global abstract clock (DARTClock) used to control the 
time in DART; all DART entities use this clock rather 
than Director’s built in clock.  The designer can pause, 
step through the data slowly, and rewind the data. This is 
useful for jumping to a particular time within a segment 
or for quickly reviewing a captured segment.

•   Live and captured data can be mixed so that while 
some data enters the application live, other data can be 
simulated.  For example, an application could combine 
live user input with simulated data; this could be useful 
for gathering user feedback on a particular design.

•  Applications can be designed without functioning sensors.  
If sensors have not been deployed (or if they are broken) 
the data can be manually created to simulate a captured 
data set. 

Related Work
The Phidget toolkit [3], aimed at making tangible devices 
available to designers (via COM and ActiveX), provides 
wizard-of-oz graphical proxies to allow development of 
applications without access to sensors.  In contrast, capture/
playback facilities provide realistic sensor data, enabling 
a design strategy beyond WoZ graphical interfaces.  In the 
UbiComp community, there have been a number of projects 
involving capture and access systems primarily used for 
knowledge acquisition within a particular physical space (e.g. 
[5]).  Our work uses captured data sets to design multimedia 
applications in a prototyping environment.  When a design is 
complete, the application can be easily deployed in the actual 
physical location with actual sensor data.

References
Billinghurst, M., Bowskill, J., Jessop, M., and Morphett, J., 
“A Wearable Spatial Conferencing Space”, In Proc. ISWC ‘98, 
1998, pp. 76-83.  
MacIntyre, B., Gandy, M., Dow, S., Bolter, J.D., “DART:  A 
Toolkit for Rapid Design Exploration of Augmented Reality 
Experiences”, To appear in UIST’04, 2004.
Greenberg, S. and Fitchett, C., “Phidgets: Easy Development 
of Physical Interfaces through Physical Widgets.” In Proc. 
UIST’01, November 11-14, 2001, pp. 209-218.
Taylor, R., T. Hudson, A. Seeger, H. Weber, J. Juliano, A. 
Helser, “VRPN – A Device-Independent, Network-Transparent 
VR Peripheral System”, In Proc. VRST’01, Nov. 15-17, 2001, 
pp. 55-61.
Truong, K.N., Abowd, G.D., Brotherton, J.A., “Who, What, 
When, Where, How: Design Issues of Capture & Access 
Applications”, UBICOMP’01, 2001, pp. 209-224.

1.

2.

3.

4.

5.


