Overview of neural vocoding: Case study with WaveNet
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Link about overview of Synthesis:


http://cs.cmu.edu/~srallaba/Learn_Synthesis
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Formulation of WaveNet - Probability of speech segments

- Let Q. denote the set of all possible sequences of length T over {0,1, ..., d=1} .
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Formulation of WaveNet - Probability of speech segments

Let Q_ denote the set of all possible sequences of length T.

Let P: Q. — [0,1] be a probability distribution which achieves higher values for
speech sequences than for other sequences.

Knowledge of P enables us to test if a sequence {x x, - x.} C speech.

Also, it allows us sample from this distribution and generate sequences that with
high probability look like speech.

But T needs to be large enough to apply this.
As T increases, P becomes smaller and smaller.

Use conditional distribution P(x, | x, , ..., X, ,)




Formulation of WaveNet - The conditional probability

The conditional probability P(x, | x, , ...
into one of a number of bins (usually 256).

, X, 1) iIs modelled with a categorical distribution where x, falls

- WaveNet uses causal dilated convolutions to model this conditional probability on quantized raw

audio.

- Raw audio is transformed to <x,,X,..x;> using mu-law transformation. [-1 < x; < 1]

- X, is quantized into 256 bins.

- X is one hot encoded.
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Formulation of WaveNet - Dilated Convolutions
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Formulation of WaveNet - Residual Connections

WaveNet has 30 layers of dilated convolutions.

Idea: Reformulate the mapping function x — f(x)
between layers from f(x) = F(x) to f(x) = x + F(x).

The residual networks have identity mappings, X,
as skip connections and inter-block activations F(x).

The residual F(x) can be easily learnt

Forward and backward signals can be directly propagated
between any two blocks.

Avoiding vanishing gradient problem
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Formulation of WaveNet - Experts and Gates

Different parts in input space might need different expertise.

Idea: Define an expert per output channel.

Contribution of each expert is controlled by a gating mechanism.

The components of the output vector are mixed in higher layers, creating mixture of experts.
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Formulation of WaveNet - Audio Generation

- After training, the network is sampled to generate synthetic utterances.

- At each step during sampling a value is drawn from the probability distribution
computed by the network.

- This value is then fed back into the input and a new prediction for the next step is
made.

Example with receptive field 3 and 4 quantization channels

Input: x4 x5, X3

0.2
0.3| Probability distribution
Outputs = ps = Wavenet(x,, xz, x3) = 0.4| overthe symbols0,1,2,3
| — 0.1
sample: Cxy =13
| ¥
Input: [ X2,X3, X4
f 0.7
o ¢ 0 _ _10.1
utput: | ps = Wavenet(x,,x;,x,) = 0.1
| 0.1

sample: ¥ =10



Formulation of WaveNet - Basic Architecture
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Formulation of WaveNet - Local Conditioning
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Formulation of WaveNet - Global Conditioning
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WaveNet - Few Points

- The number of dilated modules should be = 40.

- Models trained with 48 kHz speech produce higher quality audio than models trained with 16 kHz
speech.

- The model need more than 300000 iterations to converge.

- The speech quality is strongly affected by the up-sampling method of the linguistic labels.
- The Adam optimization algorithm is a good choice.

- Conditioning: pentaphones + stress + continuous FO + VUV

- If overtrained, can generate white noise.

WaveNet:


http://tts.speech.cs.cmu.edu/rsk/tts_stuff/Blizzard_2018/experiments/vocoder/wavenet/test_samples/

WaveNet - Questions

- Can we improve training?
Speed
Time
Data Requirement
- Can we make the model more stable?

- Can we incorporate some speech knowledge? .



Expts in Neural Vocoding - Subsegmental Formulations

- Knowledge of P enables us to test if a sequence {x x, - x,;} C speech.

- Speech has long term and short term dependencies.

- WaveNet provides high fidelity.

- The building blocks of WaveNet: Dilations, Residual blocks, gating mechanism.

- In practise, the receptive field used : 500 msec

- Question: Can we provide some long term info and reduce the model complexity?

- Can we model just short term dependencies and provide long term as side
information? [We any way provide spectral information]

Juvela, Lauri, et al. "Speech waveform synthesis from MFCC sequences with generative adversarial networks." arXiv preprint arXiv:1804.00920 (2018)
http://tts.speech.cs.cmu.edu/rsk/tts _stuff/kitchen/segmental-wavenet-experiments/conditional_formulation/20August/



http://tts.speech.cs.cmu.edu/rsk/tts_stuff/kitchen/segmental-wavenet-experiments/conditional_formulation/20August/
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- 256 way softmax makes the gradients with respect to network parameters sparse, especially early
in the training: 127 is equidistant from 128 and 252

- If we incorporate the information that speech sounds are a continuum ( which is true!) it might help
the model.
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Fig: Hist plot of individual bins from natural speech

Juvela, Lauri, et al. "Speaker-independent raw waveform model for glottal excitation." arXiv preprint arXiv:1804.09593(2018).
Salimans, Tim, et al. "Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications." arXiv preprint arXiv:1701.05517 (2017).
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Expts in Neural Vocoding - Investigating Sampling

- WaveNet uses random sampling to generate synthetic speech

- Each time WaveNet is used for inference, we obtain a different waveform. (But they sound exactly
same!)

- Observation: Running Kurtosis of the generated samples is always < 10.
- Might be better to use Mode based sampling in voiced regions
- Temperature sampling: Sample randomly from a distribution adjusted by a temperature 6.

- Top k: Sample from an adjusted distribution that only permits the top k samples

Wang, Xin, et al. "A comparison of recent waveform generation and acoustic modeling methods for neural-network-based speech synthesis." arXiv preprint arXiv:1804.02549 (2018).



Expts by others

- Speaker-dependent WaveNet vocoder. [Interspeech 2017]

- Multi-task WaveNet: A Multi-task Generative Model for Statistical Parametric Speech Synthesis
without Fundamental Frequency Conditions [Interspeech 2018]

- Speech Intelligibility Enhancement Based on a Non-causal Wavenet-like Model [Interspeech 2018]
- WaveNet Vocoder with Limited Training Data for Voice Conversion [Interspeech 2018]
- Collapsed Speech Segment Detection and Suppression for WaveNet Vocoder [Interspeech 2018]

- High-quality Voice Conversion Using Spectrogram-Based WaveNet Vocoder [Interspeech 2018]



Expts by others: Speech Intelligibility Enhancement Based on a Non-causal Wavenet-like Model

[Interspeech 2018]
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