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Abstract

This is a writeup for Speech Lunch. The idea is to provide intuitions of ( hope-
fully correct), cover reasoning behind and document the implementation details
of VQVAE. Specifically, we are concerned with the applications facing speech
processing.
Index Terms: disentanglement, latent representation, continuous, discrete

1 Introduction

Blurb - We need to bring technology closer to humans
In order to bring technology closer to humans it is important to provide mechanisms for them to
interact with the same. For instance, language technologies such as Speech Recognition and Synthesis,
Visual Question Answering to name a few have been shown to be massively useful in this context.
Having said that, there are three major bottlenecks for realization of this beautiful goal of all pervasive
AI: (1) These technologies are currently only accessible in a handful number of languages around the
planet. In order to have a meaningful impact it is imperative that such technologies need to at least
exist in many more languages. (2) These technologies work for most people most of the time but
not for all the people all of the time. In other words, these technologies lack the last mile reach and
they fail in some scenarios. Failure is ok when doing speech recogition or playing chess or things
of that nature, but not failing is critical in some scenarios. Or failing so scantily that it is less than
negligible. Take autonomous vehicles for example. We want to have machines that fail once every
100 life times or a thousand lifetimes. That is when humans can sleep in an autonomous car. Thats
when it is good enough to pass the regulations in terms of safety. (3) Worse, some of these models are
akin to black boxes and we cannot even interpret what is happening inside these models. To realize
the goal though this is an important step because the machine performance has to be under some
interpretibility for everyday life usage. Take Google Trump thing as example. However, building
such technologies is expensive in terms of annotated data, etc. On the other hand, social media and
web 2.0 has enabled an outburst of audiovisual content at an unprecedented rate. Therefore, it might
be useful to design techniques that can leverage such resources to accelerate the process of building a
language technologies stack in under resourced languages.

Blurb - Lexicon is a good place to start with
A major bottleneck in the progress of many data-intensive language processing tasks such as speech
recognition and synthesis is scalability to new languages and domains. Building such technologies
for unwritten or under-resourced languages is often not feasible due to lack of annotated data or other
expensive resources. A fundamental resource required to build such a stack is a phonetic lexicon
- something that translates acoustic input to textual representation. Having such a lexicon, even if
noisy, can help bootstrap speech recognition models, synthesis, and other technologies.
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Design Choice - Resynthesis is a good proxy and Neural Generative Models are good
Artificial generation of speech based on neural approaches has soared in the recent past. There have
been continuous and significant improvements in both the aspects of speech generation - fidelity
and flexibility. These models aim to model the joint probability of the data distribution and the
conditioning information as a product of conditional distributions. Autoregressive models such as
(14), flow based models such as (8) have shown to generate audio that rivals the quality of natural
speech. Approaches such as (13; 12) have shown ways to incorporate inductive biases into the
generative process. (16) developed generic methods to enable the usage of distributional analysis of
text at phone, word, and character levels in an unsupervised fashion. These techniques have been
utilized in building highly flexible systems capable of generating different styles of speech and ability
to build voices from noisy or very minimal data.

Design Choice - Latent Stochastic Variable Models
Speech has a lot of natural variations in terms of content, speaker, channel information, speaking style,
prosodic variations, etc. Accordingly, we are interested in models which have flexibility to marginalize
such variations but preserve the phonetic content and distinguish meaningful differences between
phonetic units. To accomplish this, we employ sequence to sequence models with latent random
variables (referred to as latent stochastic models hereafter). These models provide a mechanism
to jointly train both the latent representations as well as the downstream inference network. They
are expected to both discover and disentangle causal factors of variation present in the distribution
of original data, so as to generalize at inference time. While training latent stochastic models,
optimizing the exact log likelihood can be intractable. To address this, a recognition network is
employed to approximate the posterior probability using reparameterization (6). When deployed in
encoder-decoder models, this approach is often subject to an optimization challenge referred to as
KL-collapse (1), wherein the generator (usually an RNN) marginalizes the learnt latent representation.
Typical approaches to dealing this issue involve annealing the KL divergence loss (1; 18), weakening
the generator (17) and ensuring the recall using bag of words loss.

1.1 Context: ICASSP 2019

There are 25 papers that mention the word ‘Variational’ in title.

Variational AutoEncoders come under a class of models that can be termed as latent stochastic
variable models - they employ latent random variables in their framework. There are numerous
references about different components of a Variational AutoEncoder and its interpretations.

1.2 Why so popular?

Latent Stochastic variable models provide a mechanism to jointly train both the latent representations
as well as the downstream inference network In other words, they are expected to both discover and
disentangle causal factors of variation present in the distribution of original data, so as to generalize at
inference time. This ability to incorporate random variables within their framework and the potential
to identify causal factors of variation in input data makes variational models attractive with respect
to many applications from feature extraction through data augmentation. These applications cover
both generative processes - in terms of the ability of such models to generate novel content - to
discriminative processes - in terms of the robustness of such models to noise and other perturbations.
There are works that combine these advantages and generate additional data for a discriminative task
as well.
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2 Why should this VQVAE work at all?

In this section, we first present our analysis of the optimization that happens in WaveNet, followed by
latent stochastic models. We then present a case for controlling the disentanglement.

2.1 Analysis of optimization and disentanglement in Stochastic Generative Models for
Speech

Lets take WaveNet. WaveNet (15) is an autoregressive neural model with a stack of 1D convolutional
layers that is capable of directly generating audio signal. It has been shown to produce generated
speech that rivals natural speech when conditioned on predicted mel spectrum (10). The input
to WaveNet is subjected to corresponding gated activations while passing through each dilated
convolutional layer and is classified by the final softmax layer into a µ law encoding. The concrete
form of the residual gated activation function is given by following equation:

rd(x) = tanh(Wf ∗ x)� σ(Wg ∗ x) (1)

where x and rd(x) are the input and output with dilation d, respectively. The symbol ∗ is a convolution
operator with dilation d and the symbol � is an element-wise product operator. W represents a
convolution weight. The subscripts f and g represent a filter and a gate, respectively. The joint
probability of a waveform X can be written as:

P (X|θ) =
T∏
t=1

P (xt|x1, x2..xt−1, θ) (2)

given model parameters θ. During implementation of WaveNet, the autoregressive process is realized
by a stack of dilated convolutions. The final output yt at time step t can be expressed mathematically
as:

ŷt ∼
D∑
d=0

hd ∗ rd(x) (3)

where x, y represent input and output vectors; D is the number of different dilation used and d is
the dilation factor; hd is the convolution weights. This stack of convolutions is repeated multiple
times in the original WaveNet. Optimization in WaveNet is performed based on the error between
predicted sample and the ground truth sample conditioned on previous samples in the receptive field
alongside the local conditioning. Expressing the loss function being optimized mathematically the
error at sample t is:

lt = Div(ŷt||yt) (4)

Here, we define the divergence similar to the (9), To optimize this loss, the contribution from the
individual convolution layers towards this global error function must be nullified. Now let us consider
the expression for intermediate output for a single filter in Eqn 3:

xout(t) =

t∑
τ=0

h(τ)x(t− τ) (5)

where τ is the receptive field covered by the model and h(τ) represents the discrete state representation
at time t. Without loss of generality and dropping the term τ for brevity, the spectral representation
generated by the model can be expressed as:

Y (z) = H(z)X(z) (6)

Considering the discrete nature of input from Eqn 4, an interpretation of Eqn 6 is that the neural
autoregressive model acts as the transfer function and is discretized by convolving with the samples

3



from original signal. It has to be noted that this is similar to the formulation of source filter model of
speech, specifically the periodic components aka voiced sounds. Voiced sounds typically represented
as impulse train are convolved with the transfer function to generate spectral envelope. As a corollary,
from Eqn 4 and 6, we posit that the optimization in WaveNet model is performed by minimizing the
divergence between true and approximate spectral envelope. Note that latent stochastic models such
as VAEs are aimed to minimize the divergence between true and approximate posterior distributions
of input data. The advantage with such models is the presence of stochastic random variables that
capture the causal factors of variation in input based on some prior information about the distributional
characteristics of data. Techniques aimed at this (5) have shown that it is possible to effectively
disentangle the factors of variation using stochastic variables. Hence, we postulate that it should be
possible to augment WaveNet decoder with a suitable encoder and an appropriate prior distribution to
disentangle the acoustic phonetic units from a given utterance.

2.2 Analysis of role of priors in Latent Stochastic Models: Interplay between
disentanglement and reconstruction

Let us consider the ELBO being optimized by Variational AutoEncoders:

Eqφ(z|x,c)[logpθ(x|c, z)]− |DKL(qφ(z|x, c)||pθ(z|c))| (7)

where the first term is the reconstruction error while the second is the divergence between approximate
and true posteriors. The KL term plays in important role in the optimization by forcing the posterior
distribution output by encoder to follow an appropriate prior about the data generation process. The
global optimum value for this term is therefore 0, and is reached only when both the distributions
exactly match each other. Since the prior information about the data generation process typically
involves some causal factors of variation of the data, this naturally translates to a requirement on
the encoder to track such factors. It has to be noted that during training optimization is performed
in expectation over minibatches. The Expectation of KL term can then be rewritten as related to
the amount of mutual information between the latent representation and the data distribution (7).
Therefore, as the KL term decreases, so does the amount of information the encoder can place in the
latent space. In order to facilitate the reconstruction with this limited capacity, the encoder has to
also discard some nuisance factors that may not have contributed to the generation of data. Thus, the
KL term forces the encoder network to disentangle the causal factors - akin to the basis vectors - of
variation in the data and ignore the nuisance factors that may have contributed to the generation of
data.

However, if the prior is too simplistic such a unit normal distribution, the model is trivially incentivized
to force the posterior distribution to closely follow the Gaussian prior distribution (3) especially early
during the training. Typically the decoders in variational models are implemented using powerful
universal approximators such as RNNs. In the context of speech, a typical example of a generative
model that can be applied as the decoder is an autoregressive framework such as WaveNet. Since these
decoders are very powerful, they are able to learn the priors about data distribution by themselves.
When this happens, they ignore the latent representation input from the encoder and the prediction of
next sample is based solely on the marginal distribution at the current timestep by using a dictionary
approach. Therefore, the encoder is no longer forced to track the causal factors of variation in the
data, leading to issues such as mode collapse.

A reasonable and intuitive solution therefore is to make the prior space more complex thereby
pressurizing the posterior distribution to track the prior space more closely. For instance, (2) attempt
to accomplish this by adding a hyperparameter β to promote disentanglement and gradually increasing
channel capacity, something that increases loss. This can be expressed as follows:

Eqφ(z|x,c)[logpθ(x|c, z)]− β|DKL(qφ(z|x, c)||pθ(z|c))− Cz| (8)

where Cz is the channel capacity term (2). However, it has to be noted that simply making the
prior distribution arbitrarily complex also perhaps leads to unreasonable constraints on the decoder.
For instance, consider tasks in Natural language processing such as language modeling, machine
translation, image captioning. These are known to be characterized by heavy tailed Pareto output
distributions. In such scenarios, it is unreasonable to expect a uniform Gaussian prior distribution for
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the latent generative process. Employing such priors leads to weakening the decoder and resulting in
poor reconstruction ability. Therefore, priors in latent stochastic models play a significant role in the
optimization. They facilitate disentanglement of causal factors of variation on the one hand, as well
as control the ability of the model to reconstruct the data distribution on the other.

2.3 Case for Controlled Disentanglement

We believe that complete disentanglement of input data into its independent causal factors of variation
is not fully useful. A more attractive option is to employ priors about the causal factors of variation
and control what gets disentangled. This can also be seen as a way of incorporating inductive bias
into the model. Inductive biases are good because they help with interpretibility. Not having priors
might in fact lead to some clusters that do not conform to any logical explanations. While this might
be good initially, we need interpretibility when we want to use these models as first class objects to
build a stack of technology. This was always the case in supervised learning anyway. The idea is
to do away with the nuisance variables. Typical priors used today however, are generic and include
every factor of variation. This is not only less useful but also leads to an average performance. A
manifestation of this can be seen in the spoilt reconstruction ability of the models that use global
priors. Instead of weakening the decoder for covering the reconstruction, we can flip the equation
and force the encoder to encode only information required by the decoder, employing the prior to
accurately solve the task at hand.

Let us consider a data distribution X which consists of class examples {x1, x2..., xn}, where each xi
is described by attribute-set (a, b, c). The prior distribution of X can be represented by a parameteric
function g such that g maximizes the likelihood of X over the set of its attributes:

Pω(X) = gω(a, b, c) (9)

Note that the attribute-set can either contain individual entities or the relationships between them or
both. To illustrate this, let us consider a toy-example where we build a binary classifier to predict if a
given integer triplet is a Pythagorean triplet. Pythagorean triplets are a triplet of numbers that follow
Pythagoras Theorem such as {3, 4, 5} and {5, 12, 13}. In this task, the attribute-set consists of the
relationship between the first two-elements of the triplet. If the model is able to discover this attribute,
it can generalize for any given numbers. However, if we have a more complicated task like building a
classifier for MNIST digits, then the attribute-set has multiple first and second order relations like
brush strokes, shape of the digits etc. The success of modelling Pω(X), and ultimately the success on
the downstream task, relies on how well can the model disentangle these individual attributes from
the observed data Xt. Mathematically, let us consider the posterior probability of a training instance
x1 expressed as

Pθ(x1) = fθ(x1) (10)

where f denotes arbitrary function and θ denotes the parametric family used to model the distribution
X . It can be seen that compositionality over an unseen training instant xnew would be possible if f
is related to g. In other words, f needs to have some information about the latent causal factors of
variation that generated X in the first place. We hypothesize that this can be accomplished by using a
model that has the potential to generate the attribute-set in this context. Once this is done, the test
instance can be appropriately expressed as

Pθ(xnew) = h(a, k(b, c)) (11)

where h and k can be a novel combination of functions that embed these attributes in the manifold of
original distribution of X .

3 Implementation

The architecture of our model is built on top of VQ-VAE. It consists of three modules: an encoder,
quantizer and a decoder. As our encoder, we use a dilated convolution stack of layers which
downsamples the input audio by 64. The speech signal was power normalized and squashed to
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the range (-1,1) before feeding to the downsampling encoder. To make the training faster, we have
used chunks of 2000 time steps. This means we get 31 timesteps at the output of the encoder. The
quantizer acts as a bottleneck and performs vector quantization to generate the appropriate code from
a parameterized codebook. We define the latent space e ∈ Rk×d to contain k d-dim continuous
vector. Quantization is implemented using minimum distance in the embedding space. The number
of classes was chosen to be 64, approximating 64 universal phonemes. Assuming ze(x) denotes the
encoder output in the latent space, then the input of decoder zd(x) will be obtained by jd(ej , ze(x)),
where d is a similarity function of two vectors. In this paper, we consider Euclidean distance as the
similarity metric. Our decoder is an iterated dilated convolution-based WaveNet that uses a 256-level
quantized raw signal as the input and the output from vector quantization module as the conditioning.
Although using a Mixture of Logistics loss function might yield a better output, we have only used
a 256 class softmax in this study. The decoder takes the output from the quantizer along with the
speaker label as global conditioning and aims to reconstruct the input in an autoregressive fashion.
Following IDCNNs, we have shared the parameters of all the stacks. Although a structure such as
HMM (4) might be intuitively better at capturing the transitions, we have limited ourselves to a vector
quantization based approach as we observed it to be better at handling the posterior collapse problem
in VAEs. We have used 3 stacks of 10 layers each in the decoder and residual blocks with similar
dilation factors in each of the stacks shared their parameters (11).
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