Instruction Prefetching Milestone Report

Sarah Allen, Brandon Amos
srallen, bamos

I. MAJOR CHANGES

As we’ve been discussing in the private Piazza thread,
using LLVM to add instruction prefetching is more
difficult than our initial findings indicated because of
the following issues:

e The prefetch intrinsic documentation' does not
make the usage clear.

e It’s not clear how to obtain and insert the
instruction addresses into the prefetch intrinsic.

Our proposed change is therefore to implement
prefetching in the simulator to work around these issues.

II. 'WHAT YOU HAVE ACCOMPLISHED SO FAR
A. icache simulator

We first tried getting a project called
cache-pintools? working. Unfortunately, it
appears to be several years old and not maintained
and was therefore incompatible with the PIN simulator.
In our attempts to reconcile the incompatibilities, we
found that the PIN simulator contained within it a cache
simulator (tools/Memory/icache.cpp) which
seemed reasonable for our purposes.

In our first attempts to get the benchmarks running
on the cache simulator, we noticed that the hit rates for
instructions were already quite good. To address this,
we created a new benchmark (described below) and we
altered the cache simulator to make the instruction cache
much smaller.

Finally, we developed a concrete algorithm that we
intend to use for the machine learning portion. More
specifically, we determined exactly how to obtain training
data efficiently and the exact techniques we intend to
use, although these may be subject to change as the
project progresses.

B. Benchmarks: Polybench

We have identified polybench? as a set of benchmarks
to evaluate our optimizations. Polybench is widely used

Uhttp://llvm.org/docs/LangRef html#llvm- prefetch-intrinsic
Zhttp://people.csail.mit.edu/rabbah/download/cache-pintools
3http://www.cs.ucla.edu/~pouchet/software/polybench/

in compiler optimization research and provides self-
contained files for each benchmark.

We have executed our instruction cache simulator
on all of the benchmarks. Table I shows the icache
miss ratio, showing that instruction cache optimizations
may improve the performance of the benchmarks. Since
prefetching will cause more cache misses, we plan
to come up with another metric to show how well
prefetching works.

We’ve also created a new benchmark that randomly
calls the other polybench files in a loop. This creates
about 10% cache misses, but we expected a higher
value. We hope for our optimizations to also improve
performance on this file.

We intend to either use cross validation on the
individual benchmarks or to use the new randomized
benchmark to generate training instances. The latter
seems more promising in that the number of individual
benchmarks is very limited, but we are unsure as to
which approach will be better.

2mm 0.01
3mm 0.02
adi 9.71
atax 0.00
bicg 8.82
cholesky 0.08
correlation 0.12
covariance 0.02
doitgen 10.78
durbin 2.03
dynprog 6.92
fdtd-2d 6.72
fdtd-apml 9.84
floyd-warshall 13.63
gemm 0.02
gemver 0.01
gesummy 7.90
gramschmidt 0.03

jacobi-1d-imper 0.04
jacobi-2d-imper 10.02

Iu 0.00
ludemp 0.05
mvt 0.01
reg_detect 3.35
seidel-2d 11.36
symm 11.10
syr2k 10.60
syrk 0.00
trisolv 0.01
trmm 0.01

TABLE 1. POLYBENCH ICACHE MISS RATIOS

3077720000

-
3077700000 -
3077680000 -
c
i)
= |)
(]
o
)
o
£
& 3077660000 -
=
L
3077640000 -
|
3077620000 - FIJ
T T T y 1
0 2500 5000 7500 10000
Access Index
Fig. 1. First 10,000 memory references of floyd-warshall

C. Viewing Instruction Access Patterns

To better understand some of the benchmark access
patterns, we have output the instruction access traces
from our simulator. Figure 1 shows an example trace
from the first 10,000 memory access in floyd-warshall,
the worst performance benchmark.

III. MEETING YOUR MILESTONE

We did not meet our milestone goal, as implementing
the instruction prefetching is not as easy as planned. We
do, however, have our simulator up and running and
benchmarks to test.

A. Surprises

We were surprised at the difficulty in implementing
the instruction prefetching. While our initial reading of
the LLVM documentation seemed to suggest that this
could be implemented rather simply, this turns out not
to be the case.

B. Revised Schedule

We are revising the schedule in that we will need to
do a good portion of the implementation in the following
two weeks rather than having it already done. This
should not impact the overall project goals too much, as

we intentionally chose an aggressive midpoint goal in
anticipation of possible roadblocks.
C. Resources Needed

None, still working with open source software on
the course virtual machine.

