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Abstract

This paper presents a control-theoretic approach to reactive flow
control in networks that do not reserve bandwidth. We assume a
round-robin-like queue service discipline in the output queues of
the network’s switches, and propose deterministic and stochastic
models for a single conversation in a network of such switches.
These models motivate the Packet-Pair rate probing technique,
and a provably stable rate-based flow control scheme. A Kal-
man state estimator is derived from d~crete-time state space
analysis, but there are difficulties in using the estimator in prac-
tice. These difficulties are overcome by a novel estimation
scheme based on fuzzy logic. We then present a technique to
extract and use additional information horn the system to
develop a continuous-time system model. This is used to design
a wuisnt of the control law that is also provably stable, and, in
addition, takes control action as rapidly as possible. Finally,
practical issues such as correcting parameter drift and cmmlina-
tion with window flow control are described.

1. Introduction

As networks move towards integrated service, there is a
need for network control mechanisms that can provide users
with different qualities of service in terms of throughput, delay
and delay jitter [1]. Recent work has shown that these guaran-
tees can be provided if the network makes bandwidth reserva-
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tions on behalf of each conversation (also called channel, circuit
or virtual circuit we use ‘conversation’ throughout) [2-5]. How-
ever, such reservations can reduce the statistical multiplexing in
the network making the system expensive.

An interesting problem arises in the control of converaa-
tiona that do not reserve bandwidth, and hence are not given any
performance guarantees by the network. These conversations
must adapt to changing network conditions in order to achieve
their data transfer goals. In this paper we present a control-
theoretic approach to detetmine how a conversation can satisfy
its throughput and queueing delay requirements by adaptittg its
data transfer rate to changes in network state, and to prove that
such adaptations do not lead to instability. This approach can Be.
used to control both transport connections in reservationless net-
works, and so-called ‘best-effort’ connections in reservation-
oriented networks [2].

A control theoretic approach to flow control requires that
changes in the netsvork state be observable. In recent work, we
have shown that it is possible to measure network state easily if
the servers at the output queues of the switches are of a type
called a Rate Allocating Server and the transport protowl uses
the Packet-Pair probing technique (described below) [6-8].
Thus, in this paper, we will make the assumption that the queue
service discipline is of the RAS type and that sources implement
Packet-Pair. Our approach does not extend to Fmt-Come-First-
Served (FCFS) networka, where there is no simple way to probe
the network state.

The paper is laid out as follows. We first describe rate
allocating servers ($2), and present deterministic and stochastic
models for networks of such servers ($3). Nex~ we describe the
Packet-Pair state probing technique ($4). This is used as the

baais for the design of a stable rate-based flow control scheme
($5). A problem with non-linearity in the system is discussed in

$6. We present a Kalmau state estimator in $7. However, this
estimator is impractical, and so we have designed a novel esti-

mation scheme baaed on fuzzy logic ($8). A technique to
increase the frequency of control baaed on additional informa-
tion horn the system is presented in $9, and this serves as the

basis for a new control law. Practical implementation issues are
discussed in $10, and these include correcting for parameter
drift, and interaction with window flow control. We conclude
with some remarks on the limitations of the approach ($11) and

a review of related work ($ 12).
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2. Rate Allocathtg Servers 3. Choice of network model

In this sectio% we deseribe the notion of a Rate Allocat-
ing Server. Consider the queue service dscipline in the output
queues of the routers of a communication network. If packets
are scheduled in strict Time-Division-Multiplexing (TDM)
order, then whenever a conversation’s time slot comes around
and it has no data to send, the output trunk is kept idle and some
bandwidth is wasted. Suppose packets are stamped with a prior-

ity index that corresponds to the time of service of the packet
were the server actually to do TDM. It can be shown that ser-
vice in order of increasing priority index has the effect of

approximately emulating TDM without its attendant
inefficiencies [9]. This idea lies behind the Fair Queueing ser-
vice discipline [10]. In recent work it has been shown that Fair

Qwsueing is quite similar to the Virtual Clock [5] discipline [11].
Thus, we will refer to both as Rate Allocating Servers (RASS}

the reason for this name will shortly become clear.

While the Virtual Clock scheduling discipline was origi-

nally presented in the context of a reservation-oriented network
layer, we study its behavior in reservationless networks. This
raises an important point. In reservation-oriented networks, dur-
ing call set-up, a conversation specifies a desired service rate to
the servers that lie in its path. This information allows each
server to prevent overbooking of its bandwidth and the service
rate that a conversation receives is constant. However, in reser-
vationless networks, a sewer is not allowed to refuse any
conversations, and so the bandwidth could be overbooked. We
assume that in such a situatiow a RAS will divide bandwidth in
the same way as a Fair Queueing server, that is, equally among
the currently active conversations.

With a RAS, there are two ressona why the perceived rate
of service of a speeific conversation may change. FirsL the total
number of conversations served can change. Since the service
rate of the selected conversation is inversely proportional to the

number of setive conversations, the service rate of that conversa-
tion also changes.

Sewnd, if some conversation has an arrival rate slower
that its allocated bandwidth share, or has a bursty arrival patte~
then there are inteNals where it does not have my packets to
send, and the RAS will treat that conversation as idle. Thus, the
effeetive number of active conversations decreases, and the rate
allocated to all the other conversations increases. When its traftic
resumes, the service rate again decreases.

Note that even with these variations in the service rate, a

RAS provides a conversation with a more consistent serviee rate
than a FCFS server. In a FCFS server the service rate of a
conversation is linked in detail to the arrival pattern of every

other conversation in the server, and so the perceived service

rate varies rapidly.

For example, consider the situation where the number of
conversations sending data to a server is fixed, and each conver-
sation always has data to send when it is scheduled for service.
In a FCFS server, if any one conversation sends a large burst of
dat~ then the service rate of all the other conversations effec-
tively drops until the burst has been served. In a RAS, the other

conversations will be unaffected. Thus, the server allocates a

rate of service to each conversation that is, to a tit approxima-

tio~ independent of the arrival patterns of the conversations. So,

a source sending data to a RAS server should use a rate-based

flow control scheme that determines the allocated service rate,
and then sends data at this rate.

In this section, we consider how to model a network of
Rate Allocating Servers. A theoretically sound flow control
mechanism operating in a network of RASS requires an snslyti-
csl model for network transients. If the network is modeled as a
queueing system, usually the kind of results that cart be obtained
are those that hold in the average case. Though the Chapmsn-
Kohnogorov differential equations do give the exact dynamics of
a M/M/l queue, the solution of these equations is equivalent to
evaluating an irdinite sum of Bessel functions [12]. This prob-
lem is made more complicated if the network is non-Jacksonian
(as in our case). Thus, we feel that by using a queueing network
model, transient analysis becomes cumbersome and sometimes
impossible. However, flow control depends precisely on such
transients. Thus, we would like to use an approach that models
network tmnsients explicitly.

We choose to model a network of RASS deterministicslly
since it has been shown that a determuu“ “stic modeling of a RAS

network allows network transients to be calculated exactly [7].
Waclaws~ rind Agrawala have developed and analyzed a sitni-
lsx det erministic model for studying the effect of window flow

control protocols on virtual circuit dynamics [13, 14]. However,
this approach can be too simplistic, since it ignores the variations
in the allocated service rate discussed in 32. So, we first sum-
marize a determini stic mo&l similar to the one presented in [7],
and then present a stochastic extension.

3.1. Deterministic Model

We model a conversation in a FQ network as a regular
flow of packets from a source to a destination (sink) over a series
of servers (routers or switches) connected by links. The servers
in the path of the conversation are numbered 1,2,3 ...n. and the
source is numbered O. The destination is assumed to ack-
nowledge each pseket. (Strictly speaking, this assumption is not
required but we make it for ease of exposition.) We assume, for
ease of analysis, that sources always have &ta to send. This
simplification allows us to ignore start-up transients in our
analysis. The start-up costs can, in fac~ be significan~ smd these
are analyzed in [7].

The time taken to get service at each server is finite and
detertninis tic. If the ith server is idle whert a packet arrives, the
time tslmn for service is Si, and the (iitsntaneous) service rate is
defined to be pi = 1/si. Note that the time to serve one packet
includes the time taken to serve packets from all other conversa-
tions in round-robin order. Thus, the serviee rate is the inverse

of the time between cm.secutive packet services from the same
conversation.

If the server is not idle when a packet arrives, then the

service time can be more than si. This is ignored in the model,
but we will consider the implications in section 4. If there are
other packets from that conversation at the server, an incoming

packet waits for its turn to get service (we assume a FCFS
queueing dwcipline for packets from the same conversation).

The source sending rate is denoted by k and the source is
assumed to send packets spaced exactly so = 1I L time units

apart. We define

S~=tlltlX(Si 10<i Sn)

to be the bottleneck servic; time in the conversation, and b is the
index of the bottleneck server. K the bottleneck service rate, is

defined to be ~.
s~
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We will henceforth work in discrete time, so the continu-

ous time parameter, t, is replaced by the step index k. One step

corresponds to one round-trip, as explained in section 5.2. In
addition, let S (k) be the number of unacknowledged packets at

the source at time k.

3.2. Stochastic model

In the determines tic model, ~ is assumed to be constant.

Actually, p changes due to the creation and deletion of active
conversations. If the number of active conversations, N~c, is

large, we expect that the change in N== in one time interval will
be small compared to N.=. Hence the change in p in one interval
will be small and ~(k+l) will be ‘close’ to ~(k). One way to
represent this would be for p to be a fluctuation around a nomi-
nal value w. However, this does not adequately capture the
dynamics of the process, since v(k+l) is ‘close’ to ~(k) and not
to a fixed value w. Instead, we model p as a random walk
where the step is a random variable that has zero mean and has
low variance. Thus, for the most part, changes are small, but we
do not rule out the possibdity of a sudden large change. This

model is simple and though it represents only the first order
dynamics, we feel that it is sufficient for our purpose. Thus, we

define

p(k+l) = p(k) + o)(k),

where @k) is a random variable that represents zero-mean gaus-
sian white noise. There is a problem here when w is small, the

possibility of an increase is larger than the possibdity of a
decrease. Hence, at this poinL the distribution of co is symm-
etric, with a bias towards positive values (making the distribu-
tion non-gaussian). However, if ~ is sufficiently far away from
O, then the assumption of zero mean is justi6able.

The white noise assumption means that the changes in
service rate at time k and time k+l are uncorrelated. Since the
changes in the service rate are due to the effect of uncare.lated

input traffic, we think that this is valid. However, the gaussisn
assumption is harder to justify. As mentioned in [15], mtmy
noise sources in nature are gaussiam Second, a good rule of
thumb is that the gaussian assumption will reflect at least the first
order dynamics of any noise distribution. Finally, for any rea-

sonably simple control theoretic formulation (using Kahnan esti-

mation) the gaussian white noise assumption is unavoidable.

Thus, for these three reasons, we will assume that the noise is
gaussian.

These strict assumptions about the system noise are

necessary mainly for doing Kahnan estimation. We also

describe a fuzzy predction approach ($8) that does not make

these assumptions

Note that the queueing theoretic approach to modeling p

would be to define the density function of ~, say G @), that

would have to be supplied by the system administrator. llte~

system performance would be given by expectations taken over

the distribution. In contrast, we explicitly model the dynamics
of w and so our control scheme can depend on the currently
measured value of p, as opposed to only on an asymptotic time
average.

4. Detailed Dynamics of Packet-Pair

State probing is done using dte Packet-Pair mechanism,
shown in Figure 1. The figure presents a time diagram. Time
increases along the vertical axes, and each axis represents a node
in a communication network. The parallelograms represent the
transmission of a packet and correspond to two kinds of delays:

--------- -------

I—f-
rateestirna

1[ -----------------------------------

---

T
bottleneck
rate

1---

SOURCE SERVER 1 BOTTLENECK SEW

Figore 1: The Packet-Pair probing scheme

the vertical sides are as long as the transmission delay (the

packet size divided by the line capacity). Second, the slope of
the longer sides is proportional to the propagation &lay. Since
the network is store-and-forward a packet cannot be sent till it is
completely received. After a packet arrives, it may be queued
for a while before it receives service. This is represented by the
space between two dotted lines, such as de.

In the Packet-Pair scheme, the source sends out two
back-to-back packets (at time s). These are serviced by the
bottleneck by definition, the inter-packet service time is I/p, the
service time at the bottleneck. Since the acks preserve this
spacing, the source can measure the inter-ack spacing to estimate

P.

We now consider possible sources of error in the esti-
mate. The server marked 1 also spaces out the back-to-back

packets, so can it affect the measurement of ~? A moment’s
reflection reveals that as long as the second packet in the pair

arrives at the bottleneck before the bottlen~k ends semi= for

the fist packet, there is no problem. If the packet does arrive

after this time, them by definition, server 1 itself is the

bottleneck. Hence, the spacing out of packets at servers before

the bottleneck server is of no consequence, and does not intro-

duce errors into the scheme. Another detail that does not in!xo-
duce error is that the first packet may arrive when the server B
serving other packets and may be delayed, for example, by de.

Since this delay is common to koth packets in the pair, this does
not matter.

What does introduce an error is the fact that the acks may
be spread out more (or less) than Sb due to different queueing
delays for each ack along the return path. In the figure note that

the first ack has a net queueing delay of ij + bn, and the second
has a zero queueing delay. This has the effect of increasing the

estimate of p.

Note that this source of error will persist even if the
inter-ack spacing is noted at the sink and sent to the source using
a state exchange scheme [16]. Measuring p at the sink will
reduce the effect of noise, but cannot eliminate i~ since any
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server that is after the bottleneck could also cause a noise in the

measurement.

We model this error in measurement as an observation
noise. Since the observed value of y can be either increased or
decreased by this noise, with equal probability in either direc-
tiom we expect that the noise distribution is symmetric about O.
As a simplification, it is again assumed that the distribution is
gaussian, and that the noise is white.

5. Design Strategy

This section describes the strategy used to design the
flow-control mechanism, some preliminary considerations, and
the detailed design. The design strategy for the flow con~ol
mechanism is based upon the Separation Theorem [17]. Infor-
mally, the theorem states that for a linear stochastic system
where an observer is used to estimate the system state, the eigen-
values of the state estimator and the controller are separate. The
theorem allows us to use any technique for state estimation, and

then implement control usiug the estimated state; instead of the
actual state x. Thus, we will derive a control law assuming that
all required estimators are available; the estimators are derived
in section 7. We fist d~cuss our assumptions and a few prelim-
inary considerations.

5.1. Choice of SetPoint

The aim of the control is to maintain the number of pack-
ets in the bottleneck queue, n~ at a desired setpoint. Since the
system has delay components, it is not possible for the control to

stay at the setpoint at all times. Instead the system will oscillate
around the setpint value. The choice of the setpoint reflects a

tradeoff between mean packet delay, packet loss and bandwidth
loss (which is the bandwidth a conversation loses because it has
no data to send when it is eligible for service). This is discussed
below.

Let B denote the number of buffers a switch allocates per

conversation (in general, B may wuy with time, and this can be
accounted for. In this paper, we assume that B is static). Con-

sider the dktribution of n~ for the controlled system, given by

N (.x)= Pr (nb = x) (strictly speaking, N(x) is a Lebesgue meas-

ure, since we will use it to denote point probabilities). N(x) is

sharply delimited on the left by O aud on the right by B and tells
us three things:

1) Pr(loss of bandwidth) = Pr (RAS server schedules the

conversation for service I nb = ()). Asstig that these
events are irtdependen~ which is a reasonable assumptio~
we find that Pr(loss of bandwidth) is proportional to N(O).

2) Simiiarly, Pr (loss of packet) = Pr (packet arrival 1

nb = B), so that the density at B, N(B) is proportional to
the probability of a packet loss.

3) tie mean queuing delay is given by

where, on average, a packet takes Sb units of time to get
service at the bottleneck.

If the setpoint is small, then the distribution is driven
towards the left, the probability of bandwidth loss increases, the

mean packet delay is decreased, and the probability of packet
loss is decreased. Thus, we trade off bandwidth loss for lower
mean delay and packet loss. Simiiarly, if we choose a large set-

poin~ we will trade off packet loss for a larger mean delay and
lower probabilhy of bandwidth loss. In the sequel, we assume a
setpoint of B/2. The justification is tha~ since the system noise

is symmetric, and the control tracks the system noise, we expect
N(x) to be symmetric around the setpoint. In that case, a set-

point of B/2 balances the two tradeoffs. Of course, any other
setpoint can be chosen with no loss of generality.

Recent work by Mitra et al has shown that asymptotic

analysis of product form queueing networks can be used to
derive an optimal value of the setpoint [18, 19]. The application
of their ideas to this problem is explored in reference [20].

5.2. Frequency of Control

We initially restrict control actions to only once per round
trip time (MT) (this restriction is removed in section 9). For the
purpose of expositio~ divide time into epochs of length R’IT (=
R + queueing delays) (Figure 2). This is done simply by
transmitting a specially marked packet-pair, and when it retorns,
taking control action, and sending out mother marked pair.

Thus, the control action is taken at the end of every epoch.

5.3. Assumptions Regarding Round Trip Time Delay

We assume that the propagation delay, R, is constantfor a
conversation. This is usually true, since the propagation delay is
due to the speed of light in the fiber and hardware switching
delays. These are fixed, except for rare rerouting.

We assume that the round trip time is large compared to

the spacing between the acknowledgments. Hence, in the

analysis, we treat the arrival of the packet pair as a single even~
that measures both the round trip time and the bottleneck service
rate.

Finally, we assume that the measured round trip time in

epoch k, clenoted by RTT (k), is a good estimate for the round
trip time in epoch k+l. The justification is that when the system
is in equilibrium, the queue lengths are expected to be approxi-

mately the same in successive epochs. In any case, for wide area

networks, the propagation delay will be much larger than the
additional delay caused by a change in the queueing delay.

Hence, to a first approximatio~ this change can be ignored. This

assumption is removed in section 9.

5.4. Controller Design

Consider the situation at the end of the kth epoch. At this

time we know KIT(k), the round trip time in the MI epoch, and

S(k), thq number of packets outstanding at that time. We also

predict J.L(k+l), which is the estimator for the average service
rate during the (k+l)th epoch. If the service rate is ‘burstY’, then

using a time average for p may lead to problems. For example,

if the average value for L is large, but during the fist part of the
control cycle, the actual value is low, then the botdeneck buffers
could overflow. In such cases, we can take control action with

the arrival of every probe, as d~cussed in section 9.

Figure 2 shows the time diagram for the control. The
vertical axis on the left is the sourcq and the axis on the right is
the bottleneck. Each line between the axes represents a packet
pair. Control epochs are marked for the source and the

bottleneck. Note that the epochs at the Ixm.leneck are time
delayed with respect to the source. We use the convention that
the end of the kth epoch is called ‘time k’, except that rib(k)

refers to the number of packets in the bottleneck at the beginning
of the kth epoch. Estimators are marked with a hat.
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Each line represents a packet pair

---
a

Epoch k

NOW
-.

- --------------
-------------------------.---,

b

Epoch k+l

+

.,.,.,.,,-— --------------------
------------------------.

SOURCE BOTTLE

~b(k)
—--
c

yxh k I
RTT(k)

lb(k+l)
—-- h
d

@och k+’ .

R’lT(k+l)

nb@+2)
1

:~K- -

Figure Z Time scale of control

We now make a few observations regarding Figure 2.

The distance ab is the R’IT measured by the source (from the
time the first packet in the pair is sent to the time the first ack is

received). By an earlier assumption, the propagation delay for

the (k+l)th special pair is the ssme as for the ktb pair. Then
ub = cd, and the length of epoch k at the source and at the

bottleneck will be the same, and equal to IU7’(k).

At the time marked ‘NOW’, which is the end of the kth

epoch, all the packets sent in epoch k–l have been ack-

nowledged. So, the ordy unacknowledged packets are those sent
in the kth epoch itself, and this is the same as the number of out-

standing packets S(k). This can be approximated by the sending

rate multiplied by the sending interval, ?@)R1’T (k). So,

s(k) = a(k)Rm(k) 1

The number of packets in the bottleneck at the beginning of the

(k+l)th epoch is simply the number of packets at the beginning
of the kth epoch plus what came in minus what went out in the
kth epoch (ignoring the non-linearity at n~ = O, discussed in
$5.6). Since Z(k) packets were sent in, and j.t(k)R2T(k) packets
were serviced in this inteNd, we have

nb(k+l) = n~(k) + k(k)~(k) - @)R~ (k) 2

Equations (1) and (2) are the fundamental equations in this
analysis. They can be combined to give

nb(k+l) = rib(k) + S(k) – p.(k)lz!l”(k) 3

Now, nh(k+l) is already determined by what we sent in the kth
epoch, so there is no way to control it. InsteacL we will try to
control nb(k+2). We have

nb(k+2) = nb(k+l) + (k(k+l) – P(k+l))R~(k+l) 4

From (3) and (4)

nb(k+2) = n~(k) + S(k) – j.@)RTT (k) + 5

Z(k+l)l?m(k+l) – y(k+l)l?m(k+l)

The control should set this to B/2. So, set (5) to B/2, and obtain

A(k+l).

nb(k+2) = B/2 = rib(k)+ .$(k) – p(k)RIT(k) 6

+ (a,(k+l) – ~(k+l))l?m(k+l)

This gives k(k+l) as

a,(k+l) = 1
Rm(k+l)

7

[B/2 - n,(k) - S(k) + p(k)RIT(k) + p(k+l)RZT(k+l)]

Replacing the values by their estimators (which will be &rived
later), we have

k(k+l) = A 1 8.
“ RZ7’(k+l)

[B/2 - ib(k) - S(k)+ ~(k)R~(k) + ~(k+l)Rfi(k+l)]

Sincq both ~(k) and ~(k+l) are unknown, we cart safely assume

tiyt p(k)= w(k+l). Further, from an earlier assumption, we set

RIT(k+l) to RTT(k). This gives us:

~[B/2 - fib(k) - S(k)+ 2~(k)RZT(k)] 9
‘(k+l) = RZ7’(k)

This is the control law. The control always tries to get the buffer

to B/2. It may never reach there, but will always stay wound it.

NAote that the control law requires us to maintain two esti-

mators: y(k) and ;b(k). The effectiveness of the control depends

on the choice of the estimators. This is considered in sections 7
and8.

5.S. Stability Analysis

The state equation is given by (2)

~b(k+l) = rib(k) + A(k)RTT(k) – p(k)RTT(k) 10

For the stability analysis of the controlled system, ).(k) should be
substituted using the control law. Since we know Z(k+l), we

use the state equation derived from (2) instead (which is just one

step forward in time). This gives

nb(k+2) = nb(k+l) + (k(k+l)-p(k+l))R2T(k+l)

Substitute (8) in (10) to fmd the state evolution of the controlled
system.

RTT(k+l)
nb(k+2) = nb(k+l) – p(k+l)RTT(k+l) +

R77’(k)

[B/2 - ;,(k) - S(k) + 2;(k)RZT(k)]

By assumptio~ RZT(k) is close to RTT(k+l). So, to first order,

canceling RZT (k) with RTT (k+l ) and moving back two steps in
time,

rib(k) = nb(k–1) – ~(k–l)RZT(k-1) +

B/2 – &,(k–2) – S (k–2) + 2j(k–2)RZT(k-2)

Taking th~ Z transform of both sizes, and assuming

nb (k–z) = nb(k–2), we get

rib(z) = z-lnb(z) – z-2p(z) *ZU7’(z) +



B/2 – Z“%JZ) – z-%(z) + 2Z-$(Z)*FU7-(Z)

Cortsi&ring n~ as the state variable, it can be easily shown that

the characteristic equation is

If the system is to be asymptotically stable, then the roots of the
characteristic equation (the eigenvalues of the system), must lie
inside the unit circle on the complex Z plane. Solving for z‘1,
we get

,— ,—
z_~ _ 1*N1 –4 1*43 i

.—
2 2

The distance from O is hence

d

2 4?’

+ +-j- =1

Since the eigenvalues lie on the unit circle, the controlled system
is notasymptotically stable.

However, we can place the pole of the characteristic

equation so that the system is asymptotically stable. Consider
the control law

A(k+l) = *

[B/2 - ;,(k) - s(k) + 2jjk)Rm(k)]

This leads to a characteristic equation

(XZ-2– z “1+1=0

so that the roots are

The poles are symmetric almut the real axis, so we need only
ensure that

“-&=’a<l
This means that if tx <1, the system is provably asymptotically
stable (by the Separation Theorem, since the system and
observer eigenvalues are distinc~ this stability result holds
imespective of the choice of the estimators).

The physical interpretation of tx is simple: to reach B/2 at
the end of the next epoch, the source should send exactly at the
rate computed by (9). If it does so, the system may be unstable.
Instead it sends at a slightly lower rate, and this ensures that the
system is asymptotically stable. Note that ct is a constant that is
independent of the system’s dynamics artd can be chosen in
advance to be any desired value smaller thsn 1.0. The exact
vslue chosen for rs controls the rise time of the system, and for

adequate responsiveness, it should not be too small. Our simula-
tions indicate that a value of 0.9 is a good compromise between

responsiveness and instability [20]. Similar studies are mert-
tioned in [21].

6. System non-linearity

This section discusses a non-linesrity in the system, and

how it can be accounted for in the analysis. Note that the state
equation (9) is correct when n~(k+l) lies in the range O to B.
Since the system is physically incapable of having less than O,
and more than B packets in rhe bottleneck queue, the equation
actually is incorrect at the endpoints of this range. The correct
equation is them.

[

if rib(k)+ S(k) – R?T(k)~(k) <0 then O
n~(k+l) = if n~(k) + S(k) – R2T(k)p(k) > B then B

otherwise rib(k) + S(k) – RTT (k)g@)

The introduction of the MAX and MIN terms in the state equa-

tion makes the system nonlinear at the boundaries. This is a
dtificulty, since the earlier proof of stability is valid only for a

linear system. However, note that if the equilibrium peirtt (set-
Point) is chosen to lie in the interior of the range [O,B], then the
system is linear around the setpoint. Hence, for small deviations

from the setpointj the earlier stability proof, which assumes
~mesrity, is sufficient. For large deviations, stability must be
proved by other methods, such as the second method of

Liapunov [22] page 558.

However, this is only as m academic exercise. In prac-

ticq the instability of the system means that nb cart move arbi-

trarily away from the setpoint. lit section 10.2, we show how
window-bssed flow control can be used in conjunction with a

rate-based approach. Them nb can never be less than O, and the

window flow control protocol ensures that it never exceeds B,

and so true instability is not possible.

Nevertheless, we would like the system to return to the

setpoin~ whenever it detects that it has moved away from it,

rather than operating at an endpoint of its range. This is automat-

ically assured by equation (9), which shows that the system
chooses L(k+l) such that nb(k+2) is B/2. So, whenever the sys-

tem detects that it is at an endpointj it immediately takes steps to

ensure that it moves away from it.

Thus, the non-linearity in the system is of no practical
consequence, except that the flow control mechanism has to suit-

ably modify the state equations when updating ;b(k+l). A
rigorous proof of the stalility of the system using Liapunov’s
setond method is also possible, but the gain from the analysis is
slight.

7. Kalman State Estimation

This section presents a Ka.hnan state estimator, rmd shows
that Kshnsn estimation is impractical. A practical scheme is
presented in $8.

Havrng derived the control law, and proved its stability,

we now need to determine stable estimatotx for the system state.
We choose to use Kahnan estimation, since it is a well known
and robust technique [23]. Before the technique is applied, a
state-space description of the system is necessary.

7.1. State Space Description

We will use the standard linear stochastic state equation
given by

x(k+l) = ~X(k) + Hu(k) + VI (k)

y(k) = Cx(k) + VZ(k)

x, u and y are the state, input and output vectors of sizes w m
and r, respectively. G is the nxn state matrix, H is an nxm

matrix, and C is an rxn matrix. VI(k) represents the system
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noise vector, which is assumed to be zero-mean, gaussian and
white. v2(k) is the observation noisej and it is assumed to have

the ssme characteristics as the system noise.

Clearly, u is actually u, a scalar, and u(k)= l.(k). At the
end of epoch k, the source receives probes from epoch k-1. (To

be precise, probes can be received from epoch k-l as well as
from the beginning of epoch k. However, without loss of gen-

erality, this is modeled as part of the observation noise.) So, at

that time, it knows the average service time in the k-lth epoch
@-1). This is the only observation it has about the system

state and so y (k) is a scalar, y (k)= p(k–1) +V2. If this is to be

derived from the state vector x by multiplication with a constant
matrix, then the state must contain p.(k-l ). Further, the state

must also include the number of packets in the buffer, t?b. This

leads to a state vector that has three elements, n~, ~(k) and

p(k–1), where p(k) is needed since it is part of the delay chain

leading to y(k–1) in the corresponding signal flow graph. Thus,

[1

nb

x= ~

P-1

where ~.l represents the state element that stores the one step

delayed value of p.

We now torn to the G, H, VI, V2 and C matrices. The
state equations are

n~(k+l) = rib(k) + l(k)RTT(k)-~(k)RTZ’(k)

)l(k+l) = ~(k) + co(k)

w-l(k+l) = Nk)

Since RIT(k) is known at the end of the kth epoch, we can

represent it by a psettdo-ccmstant, Rtt. This gives us the matrices

[11 –Rtt O
G= 010

010

[1
Rtt

H= O
0

rOl

H%’ 1=0)
o

C=[ool]

v., is simply the (scalar) variance in the observation noise.
This completes the state space description of the flow control
system.

7.2. Kaltrtan Filter Solution to the Estimation Problem

A Kalman filter is the minimum variance state estimator

of a linear system. In other words, of all the possible estimators

for x, the Kalman estimator is the one that will minimize the
value of E([ ;(t) - x(t)] ~[;(t) - x(t)]), and in fact this vslue is

zero. Moreover, a Kabnan filter can be manipulated to yield

many other ~s of filters [23]. Thus, it is desirable to construct
a Kabnan filter for x.

In order to construct the falter, we need to determine three

matrices, Q, S and R, which are defined implicitly by:

~{&][f(,N2(,)l}=[$;]5(t-e)

1 else O. Expanding the left hand side, we have

[1

000
Q=EO#;

R = E (V22)

[1

o
S=E m,

o
If the two noise variables are assumed to be independen~ then

the expected vahte of their product will be zero, so that S = O.
However, we still need to know E(c02) and E(v22).

From the state equation,

p(k+l) = p.(k) + co(k)

Also,

~o/wwJk+l) = Kk+l) + h(k+l)

Combining,

bsmccd~+l) = W) + OI@)+ vz(k+l)

which indicates that the observed vahte of p is affected by both
the state and observation noise. As such, each component carmot

be separately determined from the observations alone. Thus, in

order to do Kahnan filtering, the values of E(coz) and E(v22)

must be extraneously supplied, either by simulation or by meas-

urement of the actual system. Practically speaking, even if good

guesses for these two values are supplied, the filter will have rea-
somble (but not optimal) performance. Hence, we will assume

that the value of noise variances are supplied by the. system
administrator, and so matrices Q, R and S are known. It is now
straightforward to apply Kahnan filtering to the resultant system.
We follow the derivation in [23] (pg 249).

The state estimator Z is &rived using

i(k+l) = Gi(k) + K(k)~(k) – C;(k)] + Hu(k)

i(o) = o

where K is the Kahnsn filter gain matrix, and is given by

K(k) = [GX@CT + S ][CZ(k)CT + R]-l

Z(k) is the etror state covariartce, and is given by the Riccatti
difference equation

~k+l) = G~k)GT + Q – K(k)[CZ(k)CT + R]K(k)T

where & is the covarisnce of x at time O, and can be assumed to

be o.

Note that a Kahnsn filter requires the Kahrum gain matrix
K(k) to be updated at each time step. This computation involves
a matrix invcrsio~ and appears to be expensive. However, since

all the matrices are at most 3x3, in practice this is not a problem.

To summarize, if the variances of the system and observa-
tion noise are available, Kalman filtering is an attractive estima-
tion technique. However, if these variances are not available,
then Kalmsn filtering cannot be used. In the next section, we
present a heuristic estimator that works even in the absence of
knowledge about system and observation noise.

where 8 is the Kronecker delta defined by 8(k) = if (k = O ) then
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8. Fuzzy Estimation

This section presents the design of a fuzzy system that
predicts the next value of a time series. Consider a scalar vari-

able (3 that assumes the sequence of values

{eJ=O~, e~, ““”, EJ

where

ek = ek.l + COk_l

and ok (called the ‘system Pertttrbation’) is a random variable

from some unknown distribution.

Suppose that an observer sees a sequence of values

61, 6% ...... Gk-1

and wishes to use the sequence to estimate the current value of
e~. We assume that the observed sequence is corrypted by some

observation noise ~, so that the observed values { CJ} are not the
actual values {Etk), and

where ~ is another random variable from an unknown distribu-

tion.

Since the perturbation and noise variables can be stochas-
tic, the ex~ct value of ek cannot be determined. what is desired

iUSte&, k ek, the predictor of ek, be opdud in SOIIE Sense.

8.1. Assumptions

We model the parameter 6k as the state variable of an
UIIICIIOWII dynamical system. The sequence {ek } is then the

sequence of states that the system assumes. We make three
weak assumptions about the system dynamics. FmL the time
scale over which the system perturbations occur is assumed to be

art order of magnitude slower than the corresponding time scale
of the observation noise.

Second, we assume that system can span a spectrum rsng-

ing from ‘steady’ to ‘noisy’. When it is steady, then the varian~e
of the system perturbations is close to zero, and changes in { %
} are due to observation nOk when the S@3XU k IIOky, (ek}

changes, but with a time constant that is longer than the time
constant of the observation noise. Finally, we assume that ~ is
from a zero mean distribution.

Note that this approach is very general, since there are no
assumptions about the exact distributions of co and ~. On the
other hand, there is no guarantee that the resulting predictor is
optimal: we only claim rhat the method is found to work well in
practice.

8.2. Exponential averaging

The basis of this approach is the predictor given by

~k+~ = ct~k + (1-)~k

The predictor is controlled by a parameter a, where a is the
weight given to past history. The larger it is, the more weight

past history has in relation to the last observation. The method is
also called exponential averaging, since the predictor is the
discrete convolution of the observed sequence with an exponen-

tial curve with a time constant ct

i$ = ‘jj(l-tZ)~@k-i-l “+ ctkeo
i=o

The exponential averaging technique is robusq and so it
has been used in a number of applications. However, a major
problem with the exponential averaging predictor is in the choice
of a. While in principle, it can be determined by lmowledge of
the system and observation noise variances, in practice, the vari-
ances are unknown. It would be useful to automatically deter-

mine a ‘good’ value of a, and to be able to change this wdue

on-line if the system behavior changes. Our approach uses fuzzy

control to effect this tuning [24-26].

8.3. Fuzzy exponential averaging

Fuzzy exponential averaging is based on the assumption

that a system can be thought of as belonging to a spectrum of

behavior that ranges horn ‘steady’ to ‘noisy’. in a ‘steady: sys-

tem, the sequen= {ek ) is approximately const~t, so that { ek ) is

affected mainly by observation noise. Them a should be large,
so that the- past history is given more weight, and transient

changes in (3 are ignored.

In contrasq ~ the system is ‘noisy’, (0~) itself could vary

considerably, and 9 reflects changes both in 6k and the observa-

tion noise. By choosing a lower value of a, the observer quickly

tracks changes in ek, while ignoring past history which ody pro-
vides old information.

While the choice of a in the extremal cases is simple, the

choice for intermediate values along the spectrum is hard to
make. We use a fuzzy controller to determine a value of a that
gracefully responds to changes in system behavior. Thus, if the
system moves along the noise spectnuw a adapts to the change,
allowing us to obtain a good estimate of 6k at all times. More-
over, if the observer does not know a a priori, the predctor
automatically determines an appropriate value.

8.4. System identification

Since a is linked to the ‘noise’ in the system, how can the
amount of ‘noise’ in the system be determined? Assume, for the

momen~ that the variance in co is an order of magnitude larger
than the variance in ~. Given this assumptiorL if a system is
‘steady’, the exponential averaging predictor will usually be
accurate, and prediction errors will be small. In this situatio~ a
should be large. In contrast, if the system is ‘noisy’, then the
exponential averaging predictor will have a large estimation
emor. This is because when the system noise is large, past his-
tory cannot predict the future. So, no matter what the value of a,
it will usually have a large error. In that case, it is best to give
little weight to past histmy by choosing a small value of a, so
that the observer can track the changes in the system.

To summarize, the observation is that if the predictor
error is large, then a should be small, and vice versa. Treating
‘small’ and ‘large’ as fuzzy linguistic variables [27], this is the
basis for a fuzzy controller for the estimation of a.

8.5. Fuzzy Controller

The controller implements three fuzzy laws:

If error is low, then a is high

If error is medium, then a is medium
If error is high, then a is low

The linguistic variables ‘low’, ‘medium’ and ‘high’ for a and
error are defined in Figure 3. The input to the fuzzy controller@
a value of error, and it outputs a in three steps. First, the error
value is mapped to a membership in each of the fuzzy sets ‘low’,

‘medium’, and ‘high’ using the definition in Figure 3. Them the
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Figure 3: Definition of linguistic variables

control rules are used to determine the applicability of each out-
come to the resultant control. Finally, the fuzzy set expressing
the control is defuzzified using the centroid defuzzifier.

The error I 6 – G I is processed in two steps before it is
input to the fuzzyzsystgm. FirsL it is converted to a proportional

le~-e~l
value, error = Seeond, it is not a good idea to use

Gk “

the absolute error value directly, since spikes in ~~ can cause the
error to be large, so that u drops to O, and all past history is lost.

So, the absolute error is smoothed using another exponential
averager. The eonstsnt for this averager, ~, is obtained from

another fuzzy controller that links the change in error to the
value of ~. The idea is that if the change in error is large, then ~

should be large, so that spikes are ignored. Otherwise, ~ should
be small. ~ and change in error are defined by the same ~mguis-
tic variables, ‘low’ and ‘high’, and these are detined exactly like

the corresponding variables for ct. With these changes, the
assumption that the variance in the observation noise is small

can now be removed. The resulting system is shown in Figure 4.

Details of the pre&ction system and a performance analysis can
be found in reference [28].

9. Using additional information

This section describes how the frequency of control can
be increased by using information about the propagation delay.

Note that fib(k+l). the estimate for the number of packets in the
bottleneck queue, plays a critical role in the control system. The

controller tracks changes in ;b(k), and so it is neeessary that
;b(k) be a good estimator of nb. ;b(k) cm be mi’de more mcu-

rate if additional information from the nebvork is available. One
such piece of information is the value of the propagation delay.

Observati
Exponential Averager z-’

k
4

[k

a
Estimate

l-=%=-l’
Proportiona
error

1 I

T Smoothed proportional error

B

Fuzzy System z-’

T-

Figure 4: Fuzzy prediction system

The round-trip time of a packet has delays due to three
causes

● the propagation delay from the speed of light and process-
ing at switches and interfaces

● the queueing delay at each switch, because previous pack-
ets from that conversation have not yet been serviced

● the phase delay, introduced when the first packet from a
previously inactive conversation waits for the server to
fish service of packets from other conversations

The propagation delay depends on the geographical spread of the

network, and for WANS, it can be of the order of a few tens of
milliseconds. The phase delay is roughly the same magnitude as
the time it takes to send one packet each from all the conversa-
tions sharing a server, the round time. The queueing delay is of

the order of several round times, since each packet in the queue
takes one round time to get serviee. For future high speed net-

works, we expect the propagation and queueing delays to be of

roughly the same magnitude, and the phase delay to be one order
of magnitude smaller. Thus, if queueing delays can be avoided,

the measured round-trip time will be approximately the propaga-
tion delay of the conversation.

An easy way to avoid queueing delays is to measure the

rouud-trip time for the first packet of the fist packet-pair. Since
this packet has no queueing delays, we can estimate the propaga-

tion delay of the conversation from this packet’s measured round

trip time. Call this propagation delay R.

The value of R is useful, since the number of packets in

the bottleneck queue at the beginning of epoch k+l, nb(k+l),
can be estimated by the number of packets being transmitted (’in

the pipe~me’) subtracted from the number of unacknowledged
packets at the beginning of the epoch, S(k). That is,

;b(k+l)=~(k) –R~(k)

Since S, R and ~(k) are known, this gives us another way of

determining g ;~(k+l). This can be used to update ;b(k+l) as art

alternative to equation (2). The advantage of this approach is
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that equation (2) is more susceptible to parameter drift. That is,

successive errors in ;~(k+l) cm add up, so that ;~(k+l) could

differ substantially from nb. In the new scheme, this risk is con-
siderably reduced the only systematic error that could be made

is in ~, and since this is frequent sampled as well as smoothed

by the fuzzy system, this is of smaller concern.

There is another substantial advantage to this approach it
enables control actions to be taken much faster than once per
round trip time. This is explained in the following section.

9.1. Faster than once per RTT control

It is useful to take control actions as fast as possible so
that the controller can react immediately to changes in the sys-
tem. In the system described thus far, we limited ourselves to
once per RTT control because this enables the simple relation-
ship between S (k) and k(k) given by equation (l). If control
actions are taken faster than once per RTT, then the epoch size is

smaller, and the relationship is no longer true. The new relation-
ship is much more complica~ srtd it is easily shown that the

state and input vectors must expand to include time delayed
values of ~ k and nb. It is clear that the faster that control
actions are required, the larger the state vector, and this complic-
ates both the analysis and the control.

In contrast, with information about the propagation delay
R, control can be done as quickly as once every packet-pair with
no change to the length of the state vector. This is demonstrated
below.

If control is done once every probe, then it is easier to
work in continuous time. We also make the fluid approximation

[29], so packet boundaries are ignored, and the data flow is like
that of a fluid in a hydraulic system. This approximation is com-
monly used [30, 31], and both analysis [19] and our simulations

show that the approximation is a close one, particularly when the
bandwidth-delay product is large [20].

Let us assume that k is held fixed for some duration J.
Then,

nb(t+.l) = rib(t) + k(t).1 – p(t).1 11

where p is the average service rate in the time interval [L t+l’1,
and n~ is assumed to lie in the linear region of the space. Also,

note that

rib(f) = ~(t) –Rp(f) 12

The control goal is to have nb(t+J) be the setpointvalue B/2.

Hence,

so,

~(t) = B/2 - S(t) +R;(t) +.lfi(t)

J
14

which is tie control law. The stability of the system is easily
determined. Note that fib(t) is given by

~b(t+~) – n~(t)
fib(t)= li??#

6
= k(t)– p(t) 15

From equation (13),

B/2 – rib(t)
nb =

J

If we &fine the state of the system by

x = rib(t) –B12

16

17

then, the equilibrium point is given by

X=o

and the state equation is

18

19

Clearly, the eigenvslue of the system is -l/J, and since J is posi-
tive, the system is both Lyapunov stable and asymptoticrdly
stable. In this system, J is the pole placement parameter, and

plays exactly the same role as rs in the discrete time system.
When J is close O, the eigenvelue of the system is close to a
and the system will reach the equilibrium point rapidly. Larger
values of J will cause the system to move to the equilibrium

point more slowly. An intuitively satisfying choice of J is one
round trip time, and this is easily estimated as S (k)p(t). In prac-
tic~ the values of R and S (k) are known, and ~(t)is estimated

by p, which is the fuzzy predictor described earlier.

10. Practical Issues

This section considers two practical considerations: how
to correct for parameter drif~ and how to coordinate rate-based

and window-based flow control.

10.1. Correcting for Parameter Drift

In any system with estimated parameters, there is a possi-
bility that the estimators will drift away from the true value, and
that this will not be detected. In our case, the estimate for the
number of packets in the bottleneck buffqr at time ~ fi~(k), is

computed from ;@-l) and the estimator p(k). If the estimators

are incorrect, &(k) might drift away from nb(k). Hence, it is rea-

somble to require a correction for parameter drift.

Note that if l(k) is set to O for some amount of time, then

nb will decrease to O. At this poing ;b CSII also be set to O, and
the system will desynchronize. In practi~ the source sends a

special pair and then sends no packets till the special pair is ack-

nowledged. Since no data was sent after the pair, when acks are
received the source is sure that the bottleneck queue has gone to

O. It can now reset fib and continue.

The penalty for implementing this correction is the loss of
bandwidth for one round-trip-time. If a conversation lasts over

many round trip times, then this loss may be insignificant over

the lifetime of the conversation. Alternately, if a user sends data
in bursts, and the conversation is idle between bursts, then the

value of;* csn be desynchronized to O one R’IT after the end of
the transmission of a data burst.

10.2. The Role of Windows

Note that our control system does not give us any guaran-

tees about the shape of the buffer size distribution N (x). Hence,
there is a non-zero probability of packet loss. In many applica-
tions, packet loss is undesirable, It requirw endpoints ~
retransmit messages, and frequent retransmissions can lead to

congestion. Thus, it is desirable to place a sharp cut-off on the
right end of N (x), or strictly speaking, to ensure that there are no
packet arrivals when nb = B. This can be arranged by having a
window flow control algorithm operating simultaneously with

the rate-based flow control algorithm described here.

In this scheme, the rate-based flow con~ol provides us a
‘good’ operating point which is the setpoint that the user selects.
In addition, the source has a liit on the number of packets it
could have outstanding (the window size), and every server on
its path reserves at least a window’s worth of buffers for that
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conversation. This assures us that even if the system deviates
horn the setpoirt~ the system does not lose packets and possible

congestive losses are completely avoided.

Note that by reserving buffers per conversation, we have

introduced reservations into a network that we earlier claimed to
be reservatiortless. However, our argument is that strict
bandwidth reservation leads to a loss of statistical multiplexing.
Aa long as no conversation is refused admission due to a lack of
buffers, statistical multiplexing of bandwidth is not affected by
buffer reservation, and the multiplexing gain is identical to that
received in a network with no buffer reservations. Thus, with
large cheap memories, we claim that it will be always be possi-
ble to reserve enough buffers so that there is no loss of statistical

multiplexing.

To repea~ we use rate-based flow control to select an
operating point, and window-based flow control as a cortaerva-
tive cut-off point. In this respec~ we agree with Jain that the two
forms of flow control are not diametrically opposed but in fact

can work together [32].

The choice of window size is critical. Using fixed sized
windows is usually not possible in high speed networks, where
the bandwidth-delay product, and hence the required window
can be large (of the order of hundreds of kilobytes per conversa-
tion). In view of this, the adaptive window allocation scheme
proposed by Hahne et al [33] is attractive. In their scheme, a
conversation is allocated a flow control window that is always

larger than the product of the allocated bandwidth at the
bottleneck, and the round trip propagation delay. So, a conver-

sation is never constrained by the size of the flow control win-
dow. A signa~mg scheme dynamically adjusts the window size
in response to changes in the network state. We believe that their
window-baaed flow control scheme is complementary to the
rate-based flow control scheme proposed in this paper.

11. Lhnitations of the Our Approach

The main limitation of a control-theoretic approach is that

it restricts the form of the system model. Since most control-

theoretic results hold for linear systems, the system model must

be cast in this form. This can be rather restrictive, and certain

aspects of the system, such as the window flow control scheme,

are not adequately modeled. Similarly, the standard noise

assumptions are also restrictive and may not reflect the actual
noise distribution in the target system.

These are mainly limitations of liiear control. There is a

growing body of literature dealing with non-linem control and

one direction for future work would be to study non-liiear
models for flow control.

Another limitation of control theory is that for controller

design, the network state should be observable. Since a FCFS

server’s state cannot be easily observed, it is hard to apply con-
trol theoretic principles to the control of FCFS networka. In con-
trast, RAS state can be probed using a packet pair, and so RAS
networks are amenable to a formal treatment.

12. Related Work and Contributions

Several control theoretic approaches to flow control have
been studied in the past. One body of work has considered the
dynamics of a system where users update their sending rate
either synchronously or asynchronously in response to measured
round trip &lays, or explicit congestion signals, for example in

references [34-38]. These approaches typically assume Poisson
sources, availability of global information, a simple fiow update

rule, and exponential servers. We do not make such assttmp-

tiorts. Further, they deal with the dynamics of the entire system,
with the sending rate of all the users explicitly taken into

account. In contrast, we consider a system with a single user,
where the effects of the other users are considered as a system
‘noise’. Also, in our approach, each user uses a rather complex
flow update rnl~ based in pa-t on fuzzy prediction, and so the

analysis is not amenable to the simplistic approach of these
authors.

Some control principles have been appealed to in work by
Jain [39] and Jacobson [40], but the approaches of these authors
is quite informal. Further, their control systems take multiple
round trip times to react to a change in the system state. In con-
trast, the system in $9.1 can take control action multiple times
per R’lT. In a high bandwidth-delay product network, this is a

significant advantage.

In recent work Ko et al [41] have studied an abnost
identical problem, and have applied principles of predictive con-
trol to hop-by-hop flow control. However, they appeal primarily
to intuitive heuristics, and do not use a formal control-theoretic

model, and hence are not able to prove stability of their system.
Further, we believe that our fuzzy scheme is a better way to

predict service rate than their straightforw~d moving-average
approach.

A control theoretic approach to individttrd optimal flow
control was described originally by Agnew [29] and since
exten&d by Filipiak [42] and Tipper et al [30]. In their

approach, a conversation is modeled by a first order differential
equatio~ using the fluid approximation. The modeling parame-

ters are tuned so that, in the steady state, the solution of the dti-

ferential equation and the solution of a corresponding queueing
model agree. While we model the service rate at the bottleneck

p as a random walk, they assume that the service rate is a non-
hteSr fUnCtiOIt of dte queue length, so that p= G (n*), where
G (.) is some nonlinear function. This is not true for a RAS,

where the service rate is independent of the queue length.

Hence, we cannot apply their techniques to our problem.

Vskil, Hsiao and Lazar [43] have used a control-theoretic

approach to optimal flow control in double-bus TDMA local-

area integrated voice/data networks. However, they assume

exponential FCFS servers, and, since the network is not geo-

graphically dispersed, propagation delays are ignored. Their
modeling of the service rate ~ is as a random variable as opposed

to a random walk, and though they propose the use of recursive

minimum mean squared error filters to estimate system state, the
bulk of the results assume complete information about the net-

work state, Vakil and Lazar [44] have considered the the design

of optimal trafiic filters when the state is not fully observable,
but the filters are specialized for voice traffic.

Robertazzi and Lazar [45] and Hsiao and Lazsr [46] have
shown that under a variety of conditions, the optimal flow con-
trol for a Jacksonian network with Poisson traffic is bang-bang

(approximated by a window scheme). It is not clear that this
result holds when their strong assumptions are removed.

In summary, we feel that our approach is substantially
different from those in the literature. Our use of a packet-pair to
estimate the system state is unique, and this estimation is critical
in enabling the control scheme. We have described two prov-
ably stable rate-based flow control schemes as well as a novel

estimation scheme using fuzzy logic. Some practical concerns in

implementing the scheme have also been addressed.

The control law presented in $9.1 has been extensively
simulated in a number of scenarios [20]. While considerations

of space do not allow us to present detailed results in this paper,
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they can be summarized as

● The performance of the flow control with Fair Queueing
servers in the benchmark suite described in reference [10]
is comparable to that of the DECbit scheme [47], but
without any need for switches to set bits.

● The flow control algorithm responds quickly and cleanly
to changes in network state,

● Unlike some current flow control algorithms (DECbit and
Jacobson’s modifications to 4.3 BSD [40,47]), the sys-
tem behaves extraordinarily well in situations where the
bandwidth-delay product is large, even if the cross traffic

is misbehaved or bursty.

● Implementation and tuning of the algorithm is straightfor-
ward, unlike the complex and ad-hoc controls in current
flow control algorithms.

● Even in complicated scensrios, the dynamics are simple
to understand and managcx in contrast the dynamics of
Jacobson’s algorithm are messy and only partially under-
stood [48].

In conclusio~ we believe that our decision to use a for-

mal control-theoretic approach in the design of a flow control
algorithm has been a success. Our algorithm behaves well even

under great stress, and more importantly, it is simple to imple-

ment and tune. These are not fortuitous, rather, they reflect the
theoretical underpinnings of the approach.

13. Future Work

This paper makes several simplifications and assump-

tions. It would be useful to measure real networks to see how far

theory and practice agree. We plan to make such measurements

in the XUNBT II experimental high speed netwbk testbed [49].
Other possibIe extensions are to design a minimum vtukmce

controller and a non-linetw controller.
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