15-744: Computer Networking

L-1 Intro to Computer Networks

Outline

Administrivia

Layering

Who's Who?

- Professor: Srinivasan Seshan
 - http://www.cs.cmu.edu/~srini
 - srini@cmu.edu
 - Office hours: Friday 4:00-5:00
- TA: Vijay Vasudevan
 - vrv+744@cs.cmu.edu
 - Office hours: Tuesday 2-3PM (or by appointment)
- Course info
 - http://www.cs.cmu.edu/~srini/15-744/S08/

Objectives

- Understand the state-of-the-art in network protocols, architectures and applications
- Understand how networking research is done
 - Teach the typical constraints and thought processes used in networking research
- How is class different from undergraduate networking (15-441)
 - Training network programmers vs. training network researchers

Web Page

- Check regularly!!
- Course schedule
- Reading list
- Lecture notes
- Announcements
- Assignments
- Project ideas
- Exams

Discussion Site

- http://great-white.cmcl.cs.cmu.edu:8080/
- For each lecture, two students will create a "public review" of paper(s) that:
 - Briefly summarizes paper (1-2 paragraphs)
 - Provides background/related material (1-2 paragraphs)
 - Critiques paper and suggests discussion topics (2-3 paragraph)
 - Try to be positive...
 - Why or why not keep this paper in syllabus?
 - What issues are left open for future research?
 - What are the important implications of the work?

Course Materials

- Research papers
 - Links to ps or pdf on Web page
 - Combination of classic and recent work
 - ~40 papers
 - Optional readings
- Recommended textbooks
 - For students not familiar with networking
 - Peterson & Davie or Kurose & Ross

Grading

- Homework assignments (20%)
 - 4 Problem sets & hands-on assignments
- Class + discussion site participation (10%)
- 2 person project (35%)
- Midterm exam + final exam (35%)
 - Closed book, in-class

Waitlist

- Class is heavily over-subscribed
 - 26 enrolled, 22 on wait-list → target size = low 20's
 - Unlikely to take any more students
- If you are trying to add class
 - Position on waitlist irrelevant
 - You must show up for the first couple lectures and sign in
 - Current wait-list order will not be used, priority will be given in the following order
 - Any PhD student
 - Any SCS student
 - Other students with research needs

Class Coverage

- Little coverage of physical and data link layer
- Little coverage of undergraduate material
 - Students expected to know this
- Focus on network to application layer
- We will deal with:
 - Protocol rules and algorithms
 - Investigate protocol trade-offs
 - Why this way and not another?

Lecture Topics

Traditional

- Layering
- Internet architecture
- Routing (IP)
- Transport (TCP)
- Queue management (FQ, RED)
- Naming (DNS)

Recent Topics

- Multicast
- Mobility/wireless
- Active networks
- QoS
- Security
- Network measurement
- Overlay networks
- P2P applications

Outline

Administrivia

Layering

What is the Objective of Networking?

- Communication between applications on different computers
- Must understand application needs/demands
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

Back in the Old Days...

Packet Switching (Internet)

Packet Switching

- Interleave packets from different sources
- Efficient: resources used on demand
 - Statistical multiplexing
- General
 - Multiple types of applications
- Accommodates bursty traffic
 - Addition of queues

Characteristics of Packet Switching

- Store and forward
 - Packets are self contained units
 - Can use alternate paths reordering
- Contention
 - Congestion
 - Delay

Internet[work]

- A collection of interconnected networks
- Host: network endpoints (computer, PDA, light switch, ...)
- Router: node that connects networks
- Internet vs. internet

Challenge

- Many differences between networks
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
- How to translate between various network technologies?

How To Find Nodes?

Naming

What's the IP address for www.cmu.edu?

It is 128.2.11.43

Computer 1

Local DNS Server

Translates human readable names to logical endpoints

Routing

Meeting Application Demands

- Reliability
 - Corruption
 - Lost packets
- Flow and congestion control
- Fragmentation
- In-order delivery
- Etc...

What if the Data gets Corrupted?

What if Network is Overloaded?

Solution: Buffering and Congestion Control

- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources → "congestion control"

What if the Data gets Lost?

What if the Data Doesn't Fit?

Problem: Packet size

- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

What if the Data is Out of Order?

Lots of Functions Needed

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

What is Layering?

- Modular approach to network functionality
- Example:

Application

Application-to-application channels

Host-to-host connectivity

Link hardware

Protocols

- Module in layered structure
- Set of rules governing communication between network elements (applications, hosts, routers)
- Protocols define:
 - Interface to higher layers (API)
 - Interface to peer
 - Format and order of messages
 - Actions taken on receipt of a message

Layering Characteristics

- Each layer relies on services from layer below and exports services to layer above
- Interface defines interaction
- Hides implementation layers can change without disturbing other layers (black box)

Layering

E.g.: OSI Model: 7 Protocol Layers

- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

OSI Layers and Locations

Layer Encapsulation

Protocol Demultiplexing

Multiple choices at each layer

Is Layering Harmful?

- Sometimes...
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)
 - Strict adherence to layering may hurt performance

Next Lecture: Design Considerations

- How to determine split of functionality
 - Across protocol layers
 - Across network nodes
- Assigned Reading
 - [SRC84] End-to-end Arguments in System Design
 - [Cla88] Design Philosophy of the DARPA Internet Protocols
- Optional Reading
 - [Cla02] Tussle in Cyberspace: Defining Tomorrow's Internet