

Design Considerations How to determine split of functionality Across protocol layers Across network nodes Assigned Reading [SRC84] End-to-end Arguments in System Design [Cla88] Design Philosophy of the DARPA Internet Protocols Optional [Cla02] Tussle in Cyberspace: Defining Tomorrow's Internet

Connecting Networks

- How to internetwork various network technologies
 - ARPANET, X.25 networks, LANs, satellite networks, packet networks, serial links...
- Many differences between networks
 - · Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing

Challenge 1: Address Formats Map one address format to another? Bad idea → many translations needed Provide one common format Map lower level addresses to common format

Challenge 2: Different Packet Sizes

- Define a maximum packet size over all networks?
 - Either inefficient or high threshold to support
- Implement fragmentation/re-assembly
 - Who is doing fragmentation?
 - Who is doing re-assembly?

Gateway Alternatives Translation Difficulty in dealing with different features supported by networks

- Scales poorly with number of network types (N^2 conversions)
- Standardization
 - "IP over everything" (Design Principle 1)
 - Minimal assumptions about network
 - Hourglass design

Standardization

- · Minimum set of assumptions for underlying net
 - Minimum packet size
 - Reasonable delivery odds, but not 100%
 - Some form of addressing unless point to point
- Important non-assumptions:
 - Perfect reliability
 - Broadcast, multicast
 - Priority handling of traffic
 - Internal knowledge of delays, speeds, failures, etc.
- Much engineering then only has to be done once

Survivability

- If network disrupted and reconfigured
 - Communicating entities should not care!
 - No higher-level state reconfiguration
- How to achieve such reliability?
 Where can communication state be stored?

	Network	Host
Failure handing	Replication	"Fate sharing"
Net Engineering	Tough	Simple
Switches	Maintain state	Stateless
Host trust	Less	More

Principle 3: Soft-state

- Soft-state
 - Announce state
 - Refresh state
 - Timeout state
- Penalty for timeout poor performance
- · Robust way to identify communication flows
 - Possible mechanism to provide non-best effort service
- Helps survivability

- There are functions that can only be correctly implemented by the endpoints do not try to completely implement these elsewhere
- Guideline not a law

Discussion

- Yes, but only to improve performance
- If network is highly unreliable
 - Adding some level of reliability helps performance, not correctness
 - Don't try to achieve perfect reliability!
 - Implementing a functionality at a lower level should have minimum performance impact on the applications that do not use the functionality

Types of Service

- Principle 5: network layer provides one simple service: best effort datagram (packet) delivery
 - All packets are treated the same
- Relatively simple core network elements
- Building block from which other services (such as reliable data stream) can be built
- Contributes to scalability of network
- No QoS support assumed from below
 - In fact, some underlying nets only supported reliable delivery
 Made Internet datagram service less useful!
 - Hard to implement without network support
 - QoS is an ongoing debate...

Status Status St

Principle 6: Decentralization \$\lambda\$. Each network owned and managed separately Will see this in BGP routing especially

Changes Over Time

- Developed in simpler times
 - Common goals, consistent vision
- With success came multiple goals examples:
 - ISPs must talk to provide connectivity but are fierce competitors
 - Privacy of users vs. government's need to monitor
 - User's desire to exchange files vs. copyright
 owners
- Must deal with the tussle between concerns in design

New Principles?

- · Design for variation in outcome
 - · Allow design to be flexible to different uses/results
- Isolate tussles
 - QoS designs uses separate ToS bits instead of overloading other parts of packet like port number
 - Separate QoS decisions from application/protocol design
- Provide choice → allow all parties to make choices on interactions
 - Creates competition
 - Fear between providers helps shape the tussle

Fragmentation

- IP packets can be 64KB
- Different link-layers have different MTUs
- Split IP packet into multiple fragments
 - IP header on each fragment
 - Various fields in header to help process
 - Intermediate router may fragment as needed
- Where to do reassembly?
 - End nodes avoids unnecessary work
 - Dangerous to do at intermediate nodes
 - Buffer space
 - Multiple paths through network

Path MTU Discovery

- · Hosts dynamically discover minimum MTU of path
- Algorithm:
 - Initialize MTU to MTU for first hop
 - Send datagrams with Don't Fragment bit set
 - If ICMP "pkt too big" msg, decrease MTU
- What happens if path changes?
 - Periodically (>5mins, or >1min after previous increase), increase MTU
- Some routers will return proper MTU
- MTU values cached in routing table

IP Address Problem (1991)

- Address space depletion
 - In danger of running out of classes A and B
- Why?
 - Class C too small for most domains
 - Very few class A IANA (Internet Assigned Numbers Authority) very careful about giving
 - Class B greatest problem
 - Sparsely populated but people refuse to give it back

Solution 1 – CIDR

- Assign multiple class C addresses
- Assign consecutive blocks
- RFC1338 Classless Inter-Domain Routing (CIDR)

Solution 2 - NAT

- Network Address Translation (NAT)
- Alternate solution to address space
 - Kludge (but useful)
- Sits between your network and the Internet
- Translates local network layer addresses to global IP addresses
- Has a pool of global IP addresses (less than number of hosts on your network)

Solution 3 - IPv6

- Scale addresses are 128bit
 - Header size?
- Simplification
 - Removes infrequently used parts of header
 - 40byte fixed size vs. 20+ byte variable
- IPv6 removes checksum
 - Relies on upper layer protocols to provide integrity
- IPv6 eliminates fragmentation
 - Requires path MTU discovery
 - Requires 1280 byte MTU

IPv6 Changes

- · TOS replaced with traffic class octet
- Flow
 - Help soft state systems
 - Maps well onto TCP connection or stream of UDP packets on host-port pair
- · Easy configuration
 - Provides auto-configuration using hardware MAC address to provide unique base
- Additional requirements
 - Support for security
 - Support for mobility

IPv6 Changes

- · Protocol field replaced by next header field
 - Support for protocol demultiplexing as well as option processing
- Option processing
 - Options are added using next header field
 - Options header does not need to be processed by every router
 - Large performance improvement
 - Makes options practical/useful

- Relatively simple design
 - Some parts not so useful (TOS, options)
- Beginning to show age
 - Unclear what the solution will be → probably IPv6

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Flags
 - Don't fragment flag
 - More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (11 bit field)

Other Fields

- Header length (in 32 bit words)
- Time to live
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak 16 bit
- Options
 - E.g. Source routing, record route, etc.
 - Performance issues
 - Poorly supported

Addressing in IP

- IP addresses are names of interfaces
- Domain Name System (DNS) names are names of hosts
- DNS binds host names to interfaces
- Routing binds interface names to paths

- Structured vs flat
- Issues
 - What information would routers need to route to Ethernet addresses?
 - Need structure for designing scalable binding from interface name to route!
 - How many levels? Fixed? Variable?

- For electrical/LAN limitations, performance or administrative reasons
- Need simple way to get multiple "networks"
 - Use bridging, multiple IP networks or split up single network address ranges (subnet)
 - Must reduce the total number of network addresses that are assigned
- CMU case study in RFC
 - Chose not to adopt concern that it would not be widely supported ©

Subnetting

- Variable length subnet masks
 - · Could subnet a class B into several chunks

			1
Network	Subnet	Host	
1111	1111	00000000	Mas

Subnetting Example

- Assume an organization was assigned address 150.100
- Assume < 100 hosts per subnet
- How many host bits do we need?
 - Seven
- What is the network mask?
 - 11111111 1111111 11111111 10000000
 - 255.255.255.128

