
1

15-744: Computer Networking

L-5 TCP & Routers

Fair Queuing

• Fair Queuing
• Core-stateless Fair queuingq g
• Assigned reading

• [DKS90] Analysis and Simulation of a Fair 
Queueing Algorithm, Internetworking: Research 
and Experience

• [SSZ98] Core Stateless Fair Queueing:

2

• [SSZ98] Core-Stateless Fair Queueing: 
Achieving Approximately Fair Allocations in 
High Speed Networks

Overview

• Fairness
• Fair-queuingq g
• Core-stateless FQ
• Other FQ variants

3

Fairness Goals

• Allocate resources fairly 
• Isolate ill-behaved users

• Router does not send explicit feedback to 
source

• Still needs e2e congestion control
• Still achieve statistical muxing

O fl fill ti i if t d

4

• One flow can fill entire pipe if no contenders
• Work conserving scheduler never idles link if 

it has a packet



2

What is Fairness?
• At what granularity?

• Flows, connections, domains?
• What if users have different RTTs/links/etc.

• Should it share a link fairly or be TCP fair?
• Maximize fairness index?

• Fairness = (Σxi)2/n(Σxi
2)   0<fairness<1

• Basically a tough question to answer – typically 

5

design mechanisms instead of policy
• User = arbitrary granularity

Max-min Fairness

• Allocate user with “small” demand what it 
wants, evenly divide unused resources to 
“big” users

• Formally:
• Resources allocated in terms of increasing demand
• No source gets resource share larger than its 

demand

6

• Sources with unsatisfied demands get equal share 
of resource

Max-min Fairness Example

• Assume sources 1..n, with resource 
demands X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants, 

divide excess (C/n - X1) to other sources: each 
gets C/n + (C/n - X1)/(n-1)

• If this is larger than what X2 wants repeat

7

If this is larger than what X2 wants, repeat 
process

Implementing max-min Fairness

• Generalized processor sharing
• Fluid fairness
• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length can get more service 

by sending bigger packets
• Unfair instantaneous service rate

8

• Unfair instantaneous service rate
• What if arrive just before/after packet departs?



3

Bit-by-bit RR
• Single flow: clock ticks when a bit is 

transmitted. For packet i:
P l th A i l ti S b i t it• Pi = length, Ai = arrival time, Si = begin transmit 
time, Fi = finish transmit time

• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all 
active flows is transmitted round number

C l l F f h k if b f

9

• Can calculate Fi for each packet if number of 
flows is know at all times

• This can be complicated

Bit-by-bit RR Illustration

• Not feasible to 
interleave bits on 
real networks
• FQ simulates bit-by-

bit RR

10

Overview

• Fairness
• Fair-queuingq g
• Core-stateless FQ
• Other FQ variants

11

Fair Queuing

• Mapping bit-by-bit schedule onto packet 
transmission schedule

• Transmit packet with the lowest Fi at any 
given time
• How do you compute Fi?

12



4

FQ Illustration

Flow 1

Flow 2

I/P O/P

13

Flow n

Variation: Weighted Fair Queuing (WFQ)

Bit-by-bit RR Example

Flow 1 Flow 2 Output

Flow 1
(arriving)

Flow 2
transmitting OutputF=5

F=8
F=10

14

F=10

F=2

Cannot preempt packet
currently being transmitted

Delay Allocation
• Reduce delay for flows using less than fair share

• Advance finish times for sources whose queues drain 
temporarilytemporarily

• Schedule based on Bi instead of Fi
• Fi = Pi + max (Fi-1, Ai) Bi = Pi + max (Fi-1, Ai - δ)
• If Ai < Fi-1, conversation is active and δ has no effect
• If Ai > Fi-1, conversation is inactive and δ determines 

how much history to take into account

15

how much history to take into account
• Infrequent senders do better when history is used

Fair Queuing Tradeoffs
• FQ can control congestion by monitoring flows

• Non-adaptive flows can still be a problem – why?
• Complex state

• Must keep queue per flow
• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
• Classification into flows may be hard

16

• Classification into flows may be hard
• Must keep queues sorted by finish times
• Finish times change whenever the flow count changes



5

Discussion Comments

• Granularity of fairness
• Mechanism vs. policy will see this in QoS

• Hard to understand
• Complexity – how bad is it?

17

Overview

• Fairness
• Fair-queuingq g
• Core-stateless FQ
• Other FQ variants

18

Core-Stateless Fair Queuing
• Key problem with FQ is core routers

• Must maintain state for 1000’s of flows
M t d t t t t Gb li d• Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
• Edge routers should do complex tasks since they have 

fewer flows
• Core routers can do simple tasks

• No per-flow state/processing this means that core routers

19

No per-flow state/processing this means that core routers 
can only decide on dropping packets not on order of 
processing

• Can only provide max-min bandwidth fairness not delay 
allocation

Core-Stateless Fair Queuing

• Edge routers keep state about flows and do 
computation when packet arrives

• DPS (Dynamic Packet State)
• Edge routers label packets with the result of 

state lookup and computation
• Core routers use DPS and local 

measurements to control processing of

20

measurements to control processing of 
packets



6

Edge Router Behavior

• Monitor each flow i to measure its arrival 
rate (ri)
• EWMA of rate
• Non-constant EWMA constant 

• e-T/K where T = current interarrival, K = constant
• Helps adapt to different packet sizes and arrival 

patterns

21

• Rate is attached to each packet

Core Router Behavior

• Keep track of fair share rate α
• Increasing α does not increase load (F) by N * 
α

• F(α) = Σi min(ri, α) what does this look like?
• Periodically update α
• Keep track of current arrival rate

• Only update α if entire period was congested or

22

Only update α if entire period was congested or 
uncongested

• Drop probability for packet = max(1- α/r, 0)

F vs. Alpha

F

C [linked capacity]

23

New alpha
r1 r2 r3 old alpha

alpha

Estimating Fair Share
• Need F(α) = capacity = C

• Can’t keep map of F(α) values would require per 
flow stateflow state

• Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α
• F(αnew) = C αnew = αold * C/Fc

• What if a mistake was made?

24

• Forced into dropping packets due to buffer capacity
• When queue overflows α is decreased slightly



7

Other Issues

• Punishing fire-hoses – why?
• Easy to keep track of in a FQ scheme

• What are the real edges in such a scheme?
• Must trust edges to mark traffic accurately
• Could do some statistical sampling to see if 

edge was marking accurately

25

Discussion Comments

• Exponential averaging
• Latency propertiesy p p
• Hand-wavy numbers
• Trusting the edge

26

Overview

• Fairness
• Fair-queuingq g
• Core-stateless FQ
• Other FQ variants

27

Stochastic Fair Queuing
• Compute a hash on each packet
• Instead of per-flow queue have a queue per 

hash bin
• An aggressive flow steals traffic from other 

flows in the same hash
• Queues serviced in round-robin fashion

• Has problems with packet size unfairnessHas problems with packet size unfairness
• Memory allocation across all queues

• When no free buffers, drop packet from longest 
queue

28



8

Deficit Round Robin
• Each queue is allowed to send Q bytes per 

round
• If Q bytes are not sent (because packet is 

too large) deficit counter of queue keeps 
track of unused portion

• If queue is empty, deficit counter is reset to 
0

29

• Uses hash bins like Stochastic FQ
• Similar behavior as FQ but computationally 

simpler

Self-clocked Fair Queuing
• Virtual time to make computation of finish 

time easier
• Problem with basic FQ

• Need be able to know which flows are really 
backlogged

• They may not have packet queued because they 
were serviced earlier in mapping of bit-by-bit to 
packet

30

p
• This is necessary to know how bits sent map onto 

rounds
• Mapping of real time to round is piecewise linear 

however slope can change often

Self-clocked FQ

• Use the finish time of the packet being 
serviced as the virtual time
• The difference in this virtual time and the real 

round number can be unbounded
• Amount of service to backlogged flows is 

bounded by factor of 2

31

Start-time Fair Queuing

• Packets are scheduled in order of their start 
not finish times

• Self-clocked virtual time = start time of 
packet in service

• Main advantage can handle variable rate 
service better than other schemes

32



9

Next Lecture: TCP & Routers

• RED
• XCP
• Assigned reading

• [FJ93] Random Early Detection Gateways for 
Congestion Avoidance

• [KHR02] Congestion Control for High 
Bandwidth-Delay Product Networks

33

y


