

Line Cards

- Network interface cards
- · Provides parallel processing of packets
- Fast path per-packet processing
 - Forwarding lookup (hardware/ASIC vs. software)

- Runs routing protocol and downloads forwarding table to line cards
 - Some line cards maintain two forwarding tables to allow easy switchover
- Performs "slow" path processing

- Handles ICMP error messages
- Handles IP option processing

Line Card Interconnect

- Virtual output buffering
 - Maintain per output buffer at input
 - Solves head of line blocking problem
 - Each of MxN input buffer places bid for output
- Crossbar connect
- Challenge: map of bids to schedule for crossbar

- Overall power is dominated by linecards
 - Sheer number
 - Optical WAN components
 - Per packet processing and buffering.
- But power *density* is dominated by switch fabric

Question

- Instead, can we use an **optical** fabric at 100Tb/s with 100% throughput?
- Conventional answer: No
 - Need to reconfigure switch too often
 - 100% throughput requires complex electronic scheduler.

- IP router design
- IP route lookup
- · Variable prefix match algorithms
- Alternative methods for packet forwarding

Original IP Route Lookup – Example

- www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - Lookup 128.2 in forwarding table
 - Prefix part of address that really matters for routing
- Forwarding table contains
 - List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- Large tables
 - 2 Million class C networks
- 32 bits does not give enough space encode network location information inside address – i.e., create a structured hierarchy

Speeding up Prefix Match (P+98)

- Cut prefix tree at 16 bit depth
 - 64K bit mask
 - Bit = 1 if tree continues below cut (root head)
 - Bit = 1 if leaf at depth 16 or less (genuine head)
 - Bit = 0 if part of range covered by leaf

- Content addressable memory (CAM)
 - Hardware based route lookup
 - Input = tag, output = value associated with tag
 - Requires exact match with tag
 - Multiple cycles (1 per prefix searched) with single CAM
 - Multiple CAMs (1 per prefix) searched in parallel
 - Ternary CAM
 - 0,1,don't care values in tag match
 - Priority (I.e. longest prefix) by order of entries in CAM

- Source routing
 - · Packet carries path
- Table of virtual circuits
 - Connection routed through network to setup state
 - Packets forwarded using connection state
- Table of global addresses (IP)
 - Routers keep next hop for destination
 - Packets carry destination address

Source Routing

- Advantages
 - Switches can be very simple and fast
- Disadvantages
 - Variable (unbounded) header size
 - Sources must know or discover topology (e.g., failures)
- Typical use
 - Ad-hoc networks (DSR)
 - Machine room networks (Myrinet)

IP Datagrams on Virtual Circuits Challenge – when to setup connections At bootup time – permanent virtual circuits (PVC) Large number of circuits For every packet transmission Connection setup is expensive

- For every connection
 - What is a connection?
 - How to route connectionless traffic?

Summary: Addressing/Classification

- Router architecture carefully optimized for IP forwarding
- Key challenges:
 - Speed of forwarding lookup/classification
 - Power consumption
- Some good examples of common case optimization
 - Routing with a clue
 - Classification with few matching rules
 - Not checksumming packets