

Past the Nyquist Limit

- More aggressive encoding can increase the channel bandwidth.
 - Example: modems
 - Same frequency number of symbols per second
 - Symbols have more possible values

- Wireless MAC
 - MACAW
 - 802.11
- Wireless TCP

Association in 802.11

Client

1: Association request

2: Association response

3: Data traffic

0000

AP

- Beacons are sent at well known intervals
- Timestamp from Beacons used to calibrate local clocks
- Local TSF timer mitigates loss of Beacons

Power Management in 802.11

- · A station is in one of the three states
 - Transmitter on
 - Receiver on
 - Both transmitter and receiver off (dozing)
- AP buffers packets for dozing stations
- AP announces which stations have frames buffered in its Beacon frames
- Dozing stations wake up to listen to the beacons
- If there is data buffered for it, it sends a poll frame to get the buffered data

IEEE 802.11 Wireless MAC

- · Support broadcast, multicast, and unicast
 - Uses ACK and retransmission to achieve reliability for unicast frames
 - No ACK/retransmission for broadcast or multicast frames
- Distributed and centralized MAC access
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)

802.11 DCF (CSMA)

- Distributed Coordination Function (CSMA/CA)
- Sense medium. Wait for a DIFS (50 µs)
- If busy, wait 'till not busy. Random backoff.
- If not busy, Tx.
- Backoff is binary exponential
- Acknowledgements use SIFS (short interframe spacing). 10 µs.
 - Short spacing makes exchange atomic

Discussion

- RTS/CTS/Data/ACK vs. Data/ACK
 - Why/when is it useful?
 - What is the right choice
 - Why is RTS/CTS not used?

- Errors often happen in bursts
- TCP cannot distinguish between corruption and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency
- Burst losses often result in timeouts
- Sender retransmission is the only option
 - Inefficient use of bandwidth

Constraints & Requirements

- Incremental deployment
 - Solution should not require modifications to fixed hosts
 - If possible, avoid modifying mobile hosts
- Probably more data to mobile than from mobile
 - Attempt to solve this first

Hybrid Approach: Snoop Protocol

- Shield TCP sender from wireless vagaries
 - Eliminate adverse interactions between protocol layers
 - Congestion control only when congestion occurs
- The End-to-End Argument [SRC84]
 - Preserve TCP/IP service model: end-to-end semantics
 - Is connection splitting fundamentally important?
- Eliminate non-TCP protocol messages
 - Is link-layer messaging fundamentally important?

Fixed to mobile: transport-aware link protocol Mobile to fixed: link-aware transport protocol

Snoop Overview

- · Modify base station
 - to cache un-acked TCP packets
 - ... and perform local retransmissions
- Key ideas
 - No transport level code in base station
 - When node moves to different base station, state eventually recreated there

- Snoop agent: active interposition agent
 - Snoops on TCP segments and ACKs
 - Detects losses by duplicate ACKs and timers
 - Suppresses duplicate ACKs from FH sender

- Packet 1 is Lost
 - Duplicate ACKs generated
- Packet 1 retransmitted from cache at higher priority

