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15-744: Computer Networking

L-10 Wireless in the Real World

Wireless in the Real World

• Real world deployment patterns
• Mesh networks and deploymentsp y
• Assigned reading

• Self-Management in Chaotic Wireless 
Deployments

• Architecture and Evaluation of an Unplanned 
802 11b Mesh Network802.11b Mesh Network
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Wireless Challenges
• Force us to rethink many assumptions
• Need to share airwaves rather than wire

D ’t k h t h t i l d• Don’t know what hosts are involved
• Host may not be using same link technology

• Mobility
• Other characteristics of wireless

• Noisy lots of losses
• Slow
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Slow
• Interaction of multiple transmitters at receiver

• Collisions, capture, interference
• Multipath interference

Overview

• 802.11
• Deployment patterns
• Reaction to interference
• Interference mitigation

• Mesh networks
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• Architecture
• Measurements
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Characterizing Current Deployments

• Datasets
• Place Lab: 28,000 APs,

• MAC, ESSID, GPS
• Selected US cities
• www.placelab.org

• Wifimaps: 300,000 APs
• MAC, ESSID, Channel, GPS (derived)
• wifimaps.com

• Pittsburgh Wardrive: 667 APs
• MAC, ESSID, Channel, Supported Rates, GPS
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AP Stats, Degrees: Placelab

(Placelab: 28000 APs, MAC, ESSID, GPS)

Portland 8683 54

San Diego 7934 76

#APs Max.
degree 50 m
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San 
Francisco 3037 85

Boston 2551 39
1 2 1

Degree Distribution: Place Lab
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Unmanaged Devices

WifiMaps.com
(300,000 APs, MAC, ESSID, Channel)

• Most users don’t 
change default 
channel

6 51

11 21

Channel %age
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• Channel selection 
must be automated

1 14

10 4
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Growing Interference in Unlicensed Bands 

• Anecdotal evidence of problems, but how 
severe?

• Characterize how 802.11 operates under 
interference in practice

Other 802.11
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What do we expect?

• Throughput to decrease 
linearly with interference )ea y t te e e ce

• There to be lots of options 
for 802.11 devices to 
tolerate interference
• Bit-rate adaptation
• Power control
• FEC hr
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• Packet size variation
• Spread-spectrum processing
• Transmission and reception 

diversity
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Interferer power
(log-scale)
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Key Questions

• How damaging can a low-power and/or 
narrow-band interferer be?

• How can today’s hardware tolerate 
interference well?
• What 802.11 options work well, and why?
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What we see
• Effects of interference 

more severe in 
practice r)practice

• Caused by hardware 
limitations of 
commodity cards, 
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which theory doesn’t 
model
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Experimental Setup

802.11
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802.11 Interferer
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• Extend SINR model to capture these vulnerabilities
• Interested in worst-case natural or adversarial interference

• Have developed range of “attacks” that trigger these vulnerabilities
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PHY header

Timing Recovery Interference
• Interferer sends continuous SYNC pattern
• Interferes with packet acquisition (PHY 

reception errors)reception errors)
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Interference Management
• Interference will get worse

• Density/device diversity is increasing
• Unlicensed spectrum is not keeping up

• Spectrum management
• “Channel hopping” 802.11 effective at mitigating some 

performance problems [Sigcomm07]
• Coordinated spectrum use – based on RF sensor network

• Transmission power controlp
• Enable spatial reuse of spectrum by controlling transmit 

power
• Must also adapt carrier sense behavior to take advantage
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Impact of frequency separation

• Even small frequency separation (i.e., 
adjacent 802.11 channel) helps

100
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10000

hp
ut

 (k
bp

s) 10MHz separation

15MHz separation

Same channel
(poor performance)

5MHz separation
(good performance)
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Transmission Power Control

• Choose transmit power levels to maximize
physical spatial reuse

• Tune MAC to ensure nodes transmit 
simultaneously when possible

• Spatial reuse = network capacity / link 
capacity
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AP1 AP2

Client1

Client2

AP1

AP2

Client1

Client2

Spatial Reuse = 1 Spatial Reuse = 2

Concurrent transmissions
increase spatial reuse

Transmission Power Control in Practice

• For simple scenario easy to 
compute optimal transmit power AP1compute optimal transmit power
• May or may not enable simultaneous 

transmit
• Protocol builds on iterative pair-wise 

optimization

• Adjusting transmit power 

AP1

AP2

Client2

d11

d22

d12

d21

requires adjusting carrier sense 
thresholds
• Echos, Alpha or eliminate carrier sense
• Altrusitic Echos – eliminates starvation 

in Echos
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Client1

Details of Power Control
• Hard to do per-packet with many NICs

• Some even might have to re-init (many ms)
• May have to balance power with rate• May have to balance power with rate

• Reasonable goal:  lowest power for max rate
• But finding ths empirically is hard!  Many {power, rate} 

combinations, and not always easy to predict how each 
will perform

• Alternate goal:  lowest power for max needed rate
• But this interacts with other people because you use more• But this interacts with other people because you use more 

channel time to send the same data.  Uh-oh.
• Nice example of the difficulty of local vs. global optimization
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Rate Adaptation

• General idea:
• Observe channel conditions like SNR (signal-

to-noise ratio), bit errors, packet errors
• Pick a transmission rate that will get best 

goodput
• There are channel conditions when reducing the 

bitrate can greatly increase throughput – e.g., if a ½ 
decrease in bitrate gets you from 90% loss to 10%decrease in bitrate gets you from 90% loss to 10% 
loss.
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Simple rate adaptation scheme
• Watch packet error rate over window (K 

packets or T seconds)
• If loss rate > threshhigh (or SNR <, etc)

• Reduce Tx rate
• If loss rate < threshlow

• Increase Tx rate
• Most devices support a discrete set of ratesMost devices support a discrete set of rates

• 802.11 – 1, 2, 5.5, 11, etc.
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Challenges in rate adaptation

• Channel conditions change over time
• Loss rates must be measured over a window

• SNR estimates from the hardware are 
coarse, and don’t always predict loss rate

• May be some overhead (time, transient 
interruptions, etc.) to changing rates
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Power and Rate Selection Algorithms
• Rate Selection

• Auto Rate Fallback: ARF
• Estimated Rate Fallback: ERF

• Goal:  Transmit at minimum necessary power to reach 
receiver
• Minimizes interference with other nodes
• Paper:  Can double or more capacity, if done right.

• Joint Power and Rate SelectionJoint Power and Rate Selection
• Power Auto Rate Fallback: PARF
• Power Estimated Rate Fallback: PERF
• Conservative Algorithms

• Always attempt to achieve highest possible modulation rate

24
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Power Control/Rate Control summary
• Complex interactions….

• More power:
• Higher received signal strength
• May enable faster rate (more S in S/N)• May enable faster rate (more S in S/N)

• May mean you occupy media for less time
• Interferes with more people

• Less power
• Interfere with fewer people

• Less power + less rate
• Fewer people but for a longer time

• Gets even harder once you consider• Gets even harder once you consider 
• Carrier sense
• Calibration and measurement error
• Mobility
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Overview

• 802.11
• Deployment patterns
• Reaction to interference
• Interference mitigation

• Mesh networks
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• Architecture
• Measurements

Community Wireless Network

• Share a few wired Internet connections
• Construction of community networksy

• Multi-hop network
• Nodes in chosen locations
• Directional antennas
• Require well-coordination

• Access pointAccess point
• Clients directly connect
• Access points operates independently
• Do not require much coordination
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Roofnet
• Goals

• Operate without extensive planning or central 
managementmanagement

• Provide wide coverage and acceptable 
performance

• Design decisions
• Unconstrained node placement
• Omni-directional antennas
• Multi-hop routing
• Optimization of routing for throughput in a slowly 

changing network

28
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Roofnet Design
• Deployment

• Over an area of about four square kilometers in Cambridge, 
Messachusetts
M t d l t d i b ildi• Most nodes are located in buildings

• 3~4 story apartment buildings
• 8 nodes are in taller buildings

• Each Rooftnet node is hosted by a volunteer user
• Hardware

• PC, omni-directional antenna, hard drive …
• 802.11b card

RTS/CTS di bl d• RTS/CTS disabled
• Share the same 802.11b channel
• Non-standard “pseudo-IBSS” mode

• Similar to standard 802.11b IBSS (ad hoc)
• Omit beacon and BSSID (network ID)
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Roofnet Node Map
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1 kilometer

Roofnet
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Typical Rooftop View

32
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A Roofnet Self-Installation Kit

Antenna ($65) 50 ft. Cable ($40)

Computer ($340)
533 MHz PC, hard 
disk, CDROM

802.11b card ($155) Software (“free”)

8dBi, 20 degree vertical

Miscellaneous ($75)
Chimney Mount,
Lightning Arrestor, etc.

Low loss (3dB/100ft)
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802.11b card ($155)
Engenius Prism 2.5, 
200mW

Our networking 
software based on 
Click

Takes a user about 45 minutes to install on a flat roof

Total: $685

Software and Auto-Configuration
• Linux, routing software, DHCP server, web server …
• Automatically solve a number of problems

• Allocating addresses
• Finding a gateway between Roofnet and the Internet
• Choosing a good multi-hop route to that gateway

• Addressing
• Roofnet carries IP packets inside its own header format and 

routing protocol
• Assign addresses automatically 
• Only meaningful inside Roofnet, not globally routabley g , g y
• The address of Roofnet nodes

• Low 24 bits are the low 24 bits of the node’s Ethernet address
• High 8 bits are an unused class-A IP address block

• The address of hosts
• Allocate 192.168.1.x via DHCP and use NAT between the 

Ethernet and Roofnet
34

Software and Auto-Configuration

• Gateway and Internet Access
• A small fraction of Roofnet users will share their 

wired Internet access links
• Nodes which can reach the Internet

• Advertise itself to Roofnet as an Internet gateway
• Acts as a NAT for connection from Roofnet to the 

Internet
• Other nodes

• Select the gateway which has the best route metric
• Roofnet currently has four Internet gateways
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Evaluation
• Method

• Multi-hop TCP
• 15 second one-way bulk TCP transfer between each pair15 second one way bulk TCP transfer between each pair 

of Roofnet nodes
• Single-hop TCP

• The direct radio link between each pair of routes
• Loss matrix

• The loss rate between each pair of nodes using 1500-
byte broadcasts

• Multi hop density• Multi-hop density
• TCP throughput between a fixed set of four nodes
• Varying the number of Roofnet nodes that are 

participating in routing

36
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Evaluation
• Basic Performance (Multi-hop TCP)

• The routes with low hop-count have much higher 
throughput

• Multi-hop routes suffer from inter-hop collisions
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Evaluation
• Basic Performance (Multi-hop TCP)

• TCP throughput to each node from its chosen 
gatewayg y

• Round-trip latencies for 84-byte ping packets to 
estimate interactive delay
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Evaluation

• Link Quality and Distance (Single-hop TCP, 
Multi-hop TCP)
• Most available links are between 500m and 

1300m and 500 kbits/s
• Srcr 

• Use almost all of the links faster than 2 Mbits/s and 
ignore majority of the links which are slower than 
hthat

• Fast short hops are the best policy
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Evaluation
• Link Quality and Distance (Multi-hop TCP, Loss matrix)

• Median delivery probability is 0.8
• 1/4 links have loss rates of 50% or more
• 802.11 detects the losses with its ACK mechanism and 

resends the packets
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Evaluation
• Architectural Alternatives

• Maximize the number of additional nodes with non-zero 
throughput to some gateway

• Ties are broken by average throughput
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Evaluation
• Inter-hop Interference (Multi-hop TCP, Single-hop TCP)

• Concurrent transmissions on different hops of a route collide 
and cause packet loss

42

Roofnet Summary
• The network’s architectures favors

• Ease of deployment
O i di ti l t• Omni-directional antennas

• Self-configuring software
• Link-quality-aware multi-hop routing

• Evaluation of network performance
• Average throughput between nodes is 627kbits/s
• Well served by just a few gateways whose position• Well served by just a few gateways whose position 

is determined by convenience
• Multi-hop mesh increases both connectivity and 

throughput
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Roofnet Link Level Measurements

• Analyze cause of packet loss
• Neighbor Abstractiong

• Ability to hear control packets or  No 
Interference

• Strong correlation between BER and S/N
• RoofNet pairs communicate

At i t di t l t• At intermediate loss rates
• Temporal Variation
• Spatial Variation

44
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Lossy Links are Common

45

Delivery Probabilities are Uniformly 
Distributed
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Delivery vs. SNR

• SNR not a good predictor
47

Is it Bursty Interference?

• May interfere but not impact SNR 
measurement

48
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Two Different Roofnet Links

• Top is typical of bursty interference, bottom 
is not

• Most links are like the bottom
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Is it Multipath Interference?

• Simulate with channel emulator
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A Plausible Explanation

• Multi-path can produce intermediate loss 
rates

• Appropriate multi-path delay is possible due 
to long-links
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Key Implications

• Lack of a link abstraction!
• Links aren’t on or off… sometimes in-between

• Protocols must take advantage of these 
intermediate quality links to perform well

• How unique is this to Roofnet?
• Cards designed for indoor environments used 

outdoors 
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