

# Wireless in the Real World Real world deployment patterns Mesh networks and deployments Assigned reading Self-Management in Chaotic Wireless Deployments Architecture and Evaluation of an Unplanned 802.11b Mesh Network













- Anecdotal evidence of problems, but how severe?
- Characterize how 802.11 operates under interference in practice





### **Key Questions**



- How damaging can a low-power and/or narrow-band interferer be?
- How can today's hardware tolerate interference well?
  - What 802.11 options work well, and why?



















# Rate Adaptation



- · General idea:
  - Observe channel conditions like SNR (signalto-noise ratio), bit errors, packet errors
  - Pick a transmission rate that will get best goodput
    - There are channel conditions when reducing the bitrate can greatly increase throughput e.g., if a  $\frac{1}{2}$  decrease in bitrate gets you from 90% loss to 10% loss.

### Simple rate adaptation scheme



- Watch packet error rate over window (K packets or T seconds)
- If loss rate > thresh<sub>high</sub> (or SNR <, etc)
  - Reduce Tx rate
- If loss rate < thresh<sub>low</sub>
  - Increase Tx rate
- Most devices support a discrete set of rates
  - 802.11 1, 2, 5.5, 11, etc.

# Challenges in rate adaptation



- Channel conditions change over time
  Loss rates must be measured over a window
- SNR estimates from the hardware are coarse, and don't always predict loss rate
- May be some overhead (time, transient interruptions, etc.) to changing rates





### **Community Wireless Network**

- Share a few wired Internet connections
- · Construction of community networks
  - Multi-hop network
    - Nodes in chosen locations
    - Directional antennas
    - Require well-coordination
  - Access point
    - Clients directly connect
    - · Access points operates independently
    - Do not require much coordination















### Software and Auto-Configuration

- Gateway and Internet Access
  - A small fraction of Roofnet users will share their wired Internet access links
  - · Nodes which can reach the Internet
    - Advertise itself to Roofnet as an Internet gateway
    - Acts as a NAT for connection from Roofnet to the Internet
  - · Other nodes
    - Select the gateway which has the best route metric
  - · Roofnet currently has four Internet gateways















### Roofnet Summary

- The network's architectures favors
  - · Ease of deployment
  - Omni-directional antennas
  - Self-configuring software
  - Link-quality-aware multi-hop routing
- Evaluation of network performance
  - Average throughput between nodes is 627kbits/s
  - Well served by just a few gateways whose position is determined by convenience
  - Multi-hop mesh increases both connectivity and throughput

# Roofnet Link Level Measurements

- Analyze cause of packet loss
- Neighbor Abstraction
  - Ability to hear control packets or No Interference
  - Strong correlation between BER and S/N
- · RoofNet pairs communicate
  - At intermediate loss rates
  - Temporal Variation
  - Spatial Variation















