

Taking Advantage of Broadcast

- Opportunistic forwarding
- Network coding
- Assigned reading
 - XORs In The Air: Practical Wireless Network Coding
 - ExOR: Opportunistic Multi-Hop Routing for Wireless Networks

- Challenge: finding the closest node to have rx'd
- Send batches of packets for efficiency
- Node closest to the dst sends first
 - Other nodes listen, send remaining packets in turn
- Repeat schedule until dst has whole batch

- Repeat summaries in every data packet
- Cumulative: what all previous nodes rx'd
- This is a gossip mechanism for summaries

Priority Ordering N4 src • Goal: nodes "closest" to the destination send first Sort by ETX metric to dst • Nodes periodically flood ETX "link state" measurements • Path ETX is weighted shortest path (Dijkstra's algorithm) • Source sorts, includes list in ExOR header

Summary

- ExOR achieves 2x throughput improvement
- ExOR implemented on Roofnet
- Exploits radio properties, instead of hiding them

Outline

- Opportunistic forwarding (ExOR)
- Network coding (COPE)
- Combining the two (MORE)

Background

• Famous butterfly example:

- All links can send one message per unit of time
 - Coding increases overall throughput

• Bob and Alice

Relay

Require 4 transmissions

COPE (Coding Opportunistically)

- Overhear neighbors' transmissions
- Store these packets in a Packet Pool for a short time
- Report the packet pool info. to neighbors
- Determine what packets to code based on the info.
- Send encoded packets

Opportunistic Coding Next hop B's queue P4 P1 P1 P2 С Р3 C. P4 P3 P2 P1 Ρ4 D В Is it good? Coding D P1+P2 Bad (only C can decode) Better coding (Both A P1+P3 P3 P1 P4 P3 and C can decode) P1+P3+P4 Best coding (A, C, D can decode)

Packet Coding Algorithm

- When to send?
 - Option 1: delay packets till enough packets to code with
 - Option 2: never delaying packets -- when there's a transmission opportunity, send packet right away
- Which packets to use for XOR?
 - Prefer XOR-ing packets of similar lengths
 - Never code together packets headed to the same next hop
 - · Limit packet re-ordering
 - XORing a packet as long as all its nexthops can decode it with a high enough probability

Packet Decoding

- Where to decode?
 - Decode at each intermediate hop
- How to decode?
 - Upon receiving a packet encoded with n native packets
 - find n-1 native packets from its queue
 - XOR these n-1 native packets with the received packet to extract the new packet

Prevent Packet Reordering

- Packet reordering due to async acks degrade TCP performance
- Ordering agent
 - Deliver in-sequence packets immediately
 - Order the packets until the gap in seq. no is filled or timer expires

25

Summary of Results

- Improve UDP throughput by a factor of 3-4
- Improve TCP by
 - wo/ hidden terminal: up to 38% improvement
 - w/ hidden terminal and high loss: little improvement
- Improvement is largest when uplink to downlink has similar traffic
- Interesting follow-on work using analog coding

_ 26

Reasons for Lower Improvement in TCP

- COPE introduces packet re-ordering
- Router queue is small → smaller coding opportunity
 - TCP congestion window does not sufficiently open up due to wireless losses
- TCP doesn't provide fair allocation across different flows

Outline

- Opportunistic forwarding (ExOR)
- Network coding (COPE)
- Combining the two (MORE)

28

ExOR

- Requires full coordination; every node must know who received what
- Only one node transmits at a time, others listen

MORE (Sigcomm07)

- Opportunistic routing with no global scheduler and no coordination
- We use random network coding
- Experiments show that randomness outperforms both current routing and ExOR

