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15-744: Computer Networking

L-13 Sensor Networks

Sensor Networks

• Directed Diffusion
• Aggregationgg g
• Assigned reading

• TAG: a Tiny AGgregation Service for Ad-Hoc 
Sensor Networks

• Directed Diffusion: A Scalable and Robust 
Communication Paradigm for Sensor NetworksCommunication Paradigm for Sensor Networks
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Outline

• Sensor Networks

• Directed Diffusion

• TAG

• Synopsis Diffusion
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Smart-Dust/Motes
• First introduced in late 90’s by groups at 

UCB/UCLA/USC
• Published at Mobicom/SOSP conferences• Published at Mobicom/SOSP conferences

• Small, resource limited devices
• CPU, disk, power, bandwidth, etc.

• Simple scalar sensors – temperature, motion
• Single domain of deployment (e.g. farm, battlefield, 

etc ) for a targeted task (find the tanks)
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etc.) for a targeted task (find the tanks)
• Ad-hoc wireless network
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Smart-Dust/Motes
• Hardware

• UCB motes
• ProgrammingProgramming

• TinyOS
• Query processing

• TinyDB
• Directed diffusion
• Geographic hash tables

• Power management
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• Power management
• MAC protocols
• Adaptive topologies

• Devices that incorporate 
communications, 
processing, sensors, and 

Berkeley Motes

p g, ,
batteries into a small 
package 

• Atmel microcontroller with 
sensors and a 
communication unit  
• RF transceiver, laser 

module, or a corner cube 
fl treflector 

• Temperature, light, 
humidity, pressure, 3 axis 
magnetometers, 3 axis 
accelerometers 
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Berkeley Motes (Levis & Culler, ASPLOS 02)
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Sensor Net Sample Apps

Habitat Monitoring: Storm 
petrels on great duck island, 

i li t J

Earthquake monitoring in shake-
test sites.

Vehicle detection: sensors along a 
road, collect data about passing 

microclimates on James 
Reserve.

8
Traditional monitoring 

apparatus.

vehicles.
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Metric: Communication

• Lifetime from one pair 
of AA batteries

Time v. Current Draw During Query Processing
of AA batteries 
• 2-3 days at full power
• 6 months at 2% duty 

cycle
• Communication 

dominates cost
• < few mS to compute
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• 30mS to send 
message
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Communication In Sensor Nets

• Radio communication 
has high link-level Ahas high link-level 
losses
• typically about 20% @ 

5m

• Ad-hoc neighbor 
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discovery

• Tree-based routing

D

F
E

Outline

• Sensor Networks

• Directed Diffusion

• TAG

• Synopsis Diffusion

11

The long term goal
EmbedEmbed numerous distributed 
devices to monitor and interact 
with physical world: in work-

Disaster ResponseCirculatory Net

p y
spaces, hospitals, homes, 
vehicles, and “the 
environment” (water, soil, air…)

Network these devices so 
that they can coordinate to
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that they can coordinate to 
perform higher-level tasks.

Requires robust distributed 
systems of tens of thousands 
of devices.
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Motivation
• Properties of Sensor Networks

• Data centric, but not node centric
• Have no notion of central authority• Have no notion of central authority
• Are often resource constrained

• Nodes are tied to physical locations, but:
• They may not know the topology
• They may fail or move arbitrarily

• Problem: How can we get data from the sensors?g
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Directed Diffusion
• Data centric – nodes are unimportant
• Request driven:

• Sinks place requests as interests
• Sources are eventually found and satisfy interests
• Intermediate nodes route data toward sinks

• Localized repair and reinforcement
• Multi-path delivery for multiple sources, sinks, and 

queries
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Motivating Example

• Sensor nodes are monitoring a flat space 
for animals

• We are interested in receiving data for all 4-
legged creatures seen in a rectangle

• We want to specify the data rate
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Interest and Event Naming
• Query/interest:

1. Type=four-legged animal
2. Interval=20ms (event data rate)
3. Duration=10 seconds (time to cache)
4. Rect=[-100, 100, 200, 400]

• Reply:
1. Type=four-legged animal
2. Instance = elephant
3. Location = [125, 220]
4. Intensity = 0.6
5. Confidence = 0.85
6. Timestamp = 01:20:40

• Attribute Value pairs no advanced naming• Attribute-Value pairs, no advanced naming 
scheme

16
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Diffusion (High Level)

• Sinks broadcast interest to neighbors
• Interests are cached by neighborsy g
• Gradients are set up pointing back to where 

interests came from at low data rate
• Once a sensor receives an interest, it 

routes measurements along gradients
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Illustrating Directed Diffusion

Setting up gradients
Sending data

Sink

Source

Sink

Source

Reinforcing
stable path
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Sink

Source

Recovering
from node failure

Sink

Source

stable path

Summary
• Data Centric

• Sensors net is queried for specific data
• Source of data is irrelevant
• No sensor specific query• No sensor-specific query 

• Application Specific
• In-sensor processing to reduce data transmitted
• In-sensor caching

• Localized Algorithms
• Maintain minimum local connectivity – save energyMaintain minimum local connectivity save energy
• Achieve global objective through local coordination

• Its gains due to aggregation and duplicate suppression may 
make it more viable than ad-hoc routing in sensor networks
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Outline

• Sensor Networks

• Directed Diffusion

• TAG

• Synopsis Diffusion
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TAG Introduction
• Programming sensor nets is hard!
• Declarative queries are easy

• Tiny Aggregation (TAG): In-network 
processing via declarative queriesprocessing via declarative queries

• In-network processing of aggregates
• Common data analysis operation
• Communication reducing

• Operator dependent benefit
• Across nodes during same epoch

• Exploit semantics improve efficiency!

• Example:  
• Vehicle tracking application: 2 weeks for 2 

students
• Vehicle tracking query: took 2 minutes to 

write, worked just as well!
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SELECT MAX(mag) 
FROM sensors 
WHERE mag > thresh
EPOCH DURATION 64ms

Basic Aggregation
• In each epoch:

• Each node samples local sensors once
• Generates partial state record (PSR)

• local readings 
• readings from children 

• Outputs PSR during its comm. slot.

• At end of epoch, PSR for whole 
network output at root

• (In paper: pipelining, grouping)

1

2 3

4
( p p p p g, g p g)

22

5

Illustration: Aggregation

Slot 1
SELECT COUNT(*) 
FROM 

1 2 3 4 5

1 1

2

1

2 3

Sensor #
Slot 1FROM sensors
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Illustration: Aggregation

Slot 2
SELECT COUNT(*) 
FROM 

1 2 3 4 5

1 1

2 2

1

2 3

Sensor #
Slot 2FROM sensors
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Illustration: Aggregation

Slot 3
SELECT COUNT(*) 
FROM 

1 2 3 4 5

1 1

2 2

1

2 3
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Sensor #
Slot 3FROM sensors
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Illustration: Aggregation

5 Slot 4
SELECT COUNT(*) 
FROM 

1 2 3 4 5

1 1

2 2

1

2 3

5
Sensor #

Slot 4FROM sensors
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Illustration: Aggregation

Slot 1
SELECT COUNT(*) 
FROM 

1 2 3 4 5

1 1

2 2

1

2 3

Sensor #
Slot 1FROM sensors
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Types of Aggregates
• SQL supports MIN, MAX, SUM, COUNT, 

AVERAGE

• Any function can be computed via TAG

• In network benefit for many operations
• E.g. Standard deviation, top/bottom N, spatial 

union/intersection, histograms, etc. 

28

, g ,
• Compactness of PSR
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Taxonomy of Aggregates
• TAG insight:  classify aggregates according to 

various functional properties
Yi ld l t f ti i ti th t• Yields a general set of optimizations that can 
automatically be applied

Property Examples Affects
Partial State MEDIAN : unbounded, 

MAX : 1 record
Effectiveness of TAG

Duplicate MIN : dup  insensitive Routing Redundancy
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Duplicate 
Sensitivity

MIN : dup. insensitive,
AVG : dup. sensitive

Routing Redundancy

Exemplary vs. 
Summary

MAX : exemplary
COUNT: summary

Applicability of Sampling, 
Effect of Loss

Monotonic COUNT : monotonic
AVG : non-monotonic

Hypothesis Testing, Snooping

Benefit of In-Network Processing

Simulation Results
Total Bytes Xmitted vs. Aggregation Function
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50x50 Grid

Depth = ~10

Neighbors = ~20
Some aggregates 
require dramatically 
more state!
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Optimization: Channel Sharing (“Snooping”)

• Insight:  Shared channel enables optimizations

• Suppress messages that won’t affect 
aggregate
• E.g., MAX

31

• Applies to all exemplary, monotonic aggregates 

Optimization: Hypothesis Testing

• Insight:  Guess from root can be used for 
suppression
• E.g. ‘MIN < 50’
• Works for monotonic & exemplary aggregates

• Also summary,  if imprecision allowed

• How is hypothesis computed?• How is hypothesis computed?
• Blind or statistically informed guess
• Observation over network subset

32
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Optimization: Use Multiple Parents

• For duplicate insensitive aggregates
• Or aggregates that can be expressed as a gg g p

linear combination of parts
• Send (part of) aggregate to all parents

• In just one message, via broadcast
• Decreases variance
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Multiple Parents Results

• Better than previousNo Splitting With Splitting• Better than previous 
analysis expected!

• Losses aren’t 
independent!

• Insight: spreads data 
li k

Benefit of Result Splitting 
(COUNT query)
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Critical 
Link!

p g
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over many links
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(2500 nodes, lossy radio model, 6 parents per 
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• Sensor Networks

• Directed Diffusion

• TAG

• Synopsis Diffusion
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Aggregation in Wireless Sensors

Aggregate data is often more important 
In-network aggregation 

3 3
71

2 1
103Count = 

gg g
over tree with unreliable communication

Used by current systems, 
TinyDB [Madden et al. OSDI’02]

Cougar [Bonnet et al. MDM’01]

10

36

1 1

3
1

1 Not robust against 
node- or link-failures
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Traditional Approach

• Reliable communication
• E g RMST over Directed Diffusion [Stann’03]E.g., RMST over Directed Diffusion [Stann 03]

• High resource overhead
• 3x more energy consumption
• 3x more latency
• 25% less channel capacity
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• 25% less channel capacity

• Not suitable for resource constrained 
sensors

Exploiting Broadcast Medium

Robust multi-path
Energy-efficient

1
4

7
15

2

20 23
Count = 

3

2
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Double-counting
Different ordering
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Challenge

38

1
1

2 Challenge: order and 
duplicate insensitivity
(ODI)

A Naïve ODI Algorithm

• Goal: count the live sensors in the network

0 0 1 0 0 0 0 0 0 0 0 1
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0 1 0 0 0 0 0 0 0 0 1 0
idBit vector

Synopsis Diffusion (SenSys’04)

• Goal: count the live sensors in the network
4

0 0 1 0 0 0 0 0 0 0 0 1

idBit vector

0 1 1 0 0 00 1 1 0 1 0 0 1 0 0 1 1

0 1 1 0 1 1 Count 1 bits
4

Synopsis should be small

Challenge
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0 1 0 0 0 0 0 0 0 0 1 0
idBit vector

0 1 0 0 0 0 Boolean
OR

0 1 0 0 1 00 1 0 0 0 0 0 1 0 0 1 00 1 0 0 1 0

Approximate COUNT algorithm: logarithmic size bit vector
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Synopsis Diffusion over Rings

• A node is in ring i if it is i
hops away from the base-
st ti

Ring 2

station

• Broadcasts by nodes in ring i
are received by neighbors in 
ring i-1
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• Each node transmits once = 
optimal energy cost (same as 
Tree)

Evaluation

Approximate COUNT with Synopsis Diffusion

Tree Syn Diff

Scheme Energy

Tree 41.8 mJ

Syn. Diff. 42.1 mJ
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loss rates

42

0
0 0.25 0.5 0.75 1

Loss Rate

More robust than Tree
Almost as energy 
efficient as Tree

Per node energy 


