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15-744: Computer Networking 

L-14 Network Topology 

Sensor Networks 

• Structural generators 

• Power laws 

• HOT graphs 

• Graph generators 

• Assigned reading 

• On Power-Law Relationships of the Internet 

Topology 

• A First Principles Approach to Understanding 

the Internet’s Router-level Topology 
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Outline 

• Motivation/Background 

• Power Laws 

• Optimization Models 

• Graph Generation 
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Why study topology? 

• Correctness of network protocols typically 

independent of topology 

• Performance of networks critically 

dependent on topology 

• e.g., convergence of route information 

• Internet impossible to replicate  

• Modeling of topology needed to generate 

test topologies 
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More on topologies.. 

• Router level topologies reflect physical connectivity 

between nodes 

• Inferred from tools like traceroute or well known public 
measurement projects like Mercator and Skitter 

• AS graph reflects a peering relationship between two 

providers/clients 

• Inferred from inter-domain routers that run BGP and publlic 

projects like Oregon Route Views 

• Inferring both is difficult, and often inaccurate  
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Hub-and-Spoke Topology 

• Single hub node 

• Common in enterprise networks 

• Main location and satellite sites 

• Simple design and trivial routing 

• Problems 

• Single point of failure 

• Bandwidth limitations 

• High delay between sites 

• Costs to backhaul to hub 
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Simple Alternatives to Hub-and-Spoke 

• Dual hub-and-spoke 
• Higher reliability 

• Higher cost 

• Good building block 

• Levels of hierarchy 

• Reduce backhaul cost 

• Aggregate the 
bandwidth 

• Shorter site-to-site 
delay … 
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Abilene Internet2 Backbone 
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Points-of-Presence (PoPs) 

• Inter-PoP links 

• Long distances 

• High bandwidth 

• Intra-PoP links 

• Short cables between 

racks or floors 

• Aggregated bandwidth 

• Links to other 

networks 

• Wide range of media 

and bandwidth 

Intra-PoP 

Other networks 

Inter-PoP 
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Deciding Where to Locate Nodes and Links 

• Placing Points-of-Presence (PoPs) 

• Large population of potential customers 

• Other providers or exchange points 

• Cost and availability of real-estate 

• Mostly in major metropolitan areas 

• Placing links between PoPs 

• Already fiber in the ground 

• Needed to limit propagation delay 

• Needed to handle the traffic load 

12 



4 

Trends in Topology Modeling 

Observation 

• Long-range links are expensive 

• Real networks are not random, 

but have obvious hierarchy 

• Internet topologies exhibit 

power law degree distributions 

(Faloutsos et al., 1999) 

• Physical networks have hard 
technological (and economic) 

constraints. 

Modeling Approach 

• Random graph (Waxman88) 

• Structural models (GT-ITM 

Calvert/Zegura, 1996) 

• Degree-based models replicate 

power-law degree sequences 

• Optimization-driven models 
topologies consistent with design 

tradeoffs of network engineers 
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Waxman model (Waxman 1988) 

• Router level model 

• Nodes placed at random 

in    2-d space with 

dimension L 

• Probability of edge (u,v): 

• ae^{-d/(bL)}, where d is 

Euclidean distance (u,v), a 

and b are constants 

• Models locality 
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v 

u d(u,v) 

Real world topologies 

• Real networks exhibit 

• Hierarchical structure 

• Specialized nodes (transit, stub..) 

• Connectivity requirements 

• Redundancy 

• Characteristics incorporated into the 

Georgia Tech Internetwork Topology Models 

(GT-ITM) simulator (E. Zegura, K.Calvert 

and M.J. Donahoo, 1995) 
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Transit-stub model (Zegura 1997) 

• Router level model 

• Transit domains  

• placed in 2-d space 

• populated with routers  

• connected to each other 

• Stub domains  

• placed in 2-d space 

• populated with routers 

• connected to transit 

domains 

• Models hierarchy 
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So…are we done? 

• No! 

• In 1999, Faloutsos, Faloutsos and 

Faloutsos published a paper, demonstrating 

power law relationships in Internet graphs 

• Specifically, the node degree distribution 

exhibited power laws 

That Changed Everything….. 
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Outline 

• Motivation/Background 

• Power Laws 

• Optimization Models 

• Graph Generation 
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Power laws in AS level topology 
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• Faloutsos3 (Sigcomm’99) 

• frequency vs. degree 

Power Laws 

topology from BGP tables of 18 routers 
20 
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• Faloutsos3 (Sigcomm’99) 

• frequency vs. degree 

Power Laws 

topology from BGP tables of 18 routers 
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• Faloutsos3 (Sigcomm’99) 

• frequency vs. degree 

Power Laws 

topology from BGP tables of 18 routers 
22 

• Faloutsos 

• frequency vs. 

degree 

• empirical ccdf     

P(d>x) ~ x-a 

Power Laws 
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Power Laws 

• Faloutsos3 (Sigcomm’99) 

• frequency vs. 

degree 

• empirical ccdf     

P(d>x) ~ x-a 

 1.15 
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GT-ITM abandoned.. 

• GT-ITM did not give power law degree 

graphs 

• New topology generators and explanation 

for power law degrees were sought 

• Focus of generators to match degree 

distribution of observed graph 
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Inet (Jin 2000) 

• Generate degree sequence  

• Build spanning tree over nodes 

with degree larger than 1, 

using preferential connectivity 

• randomly select node u not in 

tree 

• join u to existing node v with 

probability d(v)/ d(w) 

• Connect degree 1 nodes using 

preferential connectivity 

• Add remaining edges using 

preferential connectivity 
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Power law random graph (PLRG) 

• Operations 
• assign degrees to nodes drawn from power law distribution 

• create kv copies of node v; kv degree of v. 

• randomly match nodes in pool 

• aggregate edges 

may be disconnected, contain multiple edges, self-loops 

• contains unique giant component for right choice of 
parameters  
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1 1 

Barabasi model: fixed exponent 

• incremental growth 

• initially, m0 nodes 

• step: add new node i with m edges 

• linear preferential attachment 

• connect to node i with probability 

           (ki) = ki /  kj 
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Features of Degree-Based Models 

• Degree sequence follows a power law (by 
construction) 

• High-degree nodes correspond to highly connected 
central “hubs”, which are crucial to the system 

• Achilles’ heel: robust to random failure, fragile to 
specific attack  
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Preferential Attachment Expected Degree Sequence 

Does Internet graph have these properties? 

• No…(There is no Memphis!) 

• Emphasis on degree distribution - structure 

ignored 

• Real Internet very structured 

• Evolution of graph is highly constrained 
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Problem With Power Law 

• ... but they're descriptive models! 

• No correct physical explanation, need an 

understanding of: 

• the driving force behind deployment 

• the driving force behind growth 
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Outline 

• Motivation/Background 

• Power Laws 

• Optimization Models 

• Graph Generation 
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Li et al. 

• Consider the explicit design of the Internet 

• Annotated network graphs (capacity, 

bandwidth) 

• Technological and economic limitations 

• Network performance 

• Seek a theory for Internet topology that is 

explanatory and not merely descriptive. 

• Explain high variability in network connectivity 

• Ability to match large scale statistics (e.g. 

power laws) is only secondary evidence 
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Cisco 12416 GSR, circa 2002 
high BW low 
degree 

high degree 
low BW 

approximate 
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feasible region 

Aggregate Router Feasibility 

core technologies 
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Source: Cisco Product Catalog, June 2002 
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Heuristically Optimal Topology 

Mesh-like core of fast, low degree routers 

High degree nodes 

are at the edges. 

37 

Comparison Metric: Network Performance 

Given realistic technology constraints on routers, how well 

is the network able to carry traffic? 

Step 1: Constrain to 

be feasible 
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Step 2: Compute traffic demand  
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Likelihood-Related Metric 

• Easily computed for any graph 

• Depends on the structure of the graph, not the generation 
mechanism 

• Measures how “hub-like” the network core is 

• For graphs resulting from probabilistic construction (e.g. PLRG/
GRG),  

LogLikelihood (LLH)  L(g) 

• Interpretation: How likely is a particular graph (having given 
node degree distribution) to be constructed? 

Define the metric (d
i
 = degree of 

node i) 
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Lmax
l(g) = 1
P(g) = 1.08 x 1010

P(g) 
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l(g) = Relative Likelihood 40 
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PA PLRG/GRG HOT 

Structure Determines Performance 

P(g) = 1.19 x 1010 P(g) = 1.64 x 1010  P(g) = 1.13 x 1012  
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Summary Network Topology 

• Faloutsos3 [SIGCOMM99] on Internet topology 
• Observed many “power laws” in the Internet structure 

• Router level connections, AS-level connections, neighborhood sizes 

• Power law observation refuted later, Lakhina [INFOCOM00] 

• Inspired many degree-based topology generators 
• Compared properties of generated graphs with those of measured graphs 

to validate generator 

• What is wrong with these topologies? Li et al [SIGCOMM04] 

• Many graphs with similar distribution have different properties 

• Random graph generation models don’t have network-intrinsic meaning 

• Should look at fundamental trade-offs to understand topology 
• Technology constraints and economic trade-offs 

• Graphs arising out of such generation better explain topology and its 
properties, but are unlikely to be generted by random processes! 
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Outline 

• Motivation/Background 

• Power Laws 

• Optimization Models 

• Graph Generation 
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Graph Generation 

• Many important topology metrics 

• Spectrum 

• Distance distribution 

• Degree distribution 

• Clustering… 

• No way to reproduce most of the important 

metrics 

• No guarantee there will not be any other/

new metric found important 
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dK-series approach 

• Look at inter-dependencies among topology 

characteristics 

• See if by reproducing most basic, simple, 

but not necessarily practically relevant 

characteristics, we can also reproduce 

(capture) all other characteristics, including 

practically important 

• Try to find the one(s) defining all others 

0K 

Average degree <k> 

1K 

Degree distribution P(k) 

2K 

Joint degree distribution P(k1,k2) 
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3K 

“Joint edge degree” distribution P(k1,k2,k3) 

3K, more exactly 

4K Definition of dK-distributions 

 dK-distributions are degree correlations 

within simple connected graphs of size d 
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Nice properties of properties Pd 

• Constructability: we can construct graphs 

having properties Pd (dK-graphs) 

• Inclusion: if a graph has property Pd, then 

it also has all properties Pi, with i < d (dK-

graphs are also iK-graphs) 

• Convergence: the set of graphs having 

property Pn consists only of one element, G 

itself (dK-graphs converge to G) 

Rewiring 
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