
1

15-744: Computer Networking

L-16 Naming

2

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord

• Comparison of DHTs

3

Peer-to-Peer Networks

• Typically each member stores/provides access to
content

• Has quickly grown in popularity

• Bulk of traffic from/to CMU is P2P!

• Basically a replication system for files

• Always a tradeoff between possible location of files and
searching difficulty

• Peer-to-peer allow files to be anywhere searching is
the challenge

• Dynamic member list makes it more difficult

• What other systems have similar goals?

• Routing, DNS

4

The Lookup Problem

Internet

N1

N2 N3

N6 N5

N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

2

5

Centralized Lookup (Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2 N1 SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=MP3 data…

N4

6

Flooded Queries (Gnutella)

N4
Publisher@

Client

N6

N9

N7
N8

N3

N2 N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=MP3 data…

Lookup(“title”)

7

Routed Queries (Chord, etc.)

N4 Publisher

Client

N6

N9

N7
N8

N3

N2 N1

Lookup(“title”)

Key=“title”
Value=MP3 data…

8

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord

• Comparison of DHTs

3

9

Centralized: Napster

• Simple centralized scheme
motivated by ability to sell/control

• How to find a file:

• On startup, client contacts central server
and reports list of files

• Query the index system return a
machine that stores the required file
• Ideally this is the closest/least-loaded

machine

• Fetch the file directly from peer

10

Centralized: Napster

• Advantages:

• Simple

• Easy to implement sophisticated search

engines on top of the index system

• Disadvantages:

• Robustness, scalability

• Easy to sue!

11

Flooding: Old Gnutella

• On startup, client contacts any servent
(server + client) in network
• Servent interconnection used to forward control

(queries, hits, etc)

• Idea: broadcast the request

• How to find a file:

• Send request to all neighbors

• Neighbors recursively forward the request

• Eventually a machine that has the file receives
the request, and it sends back the answer

• Transfers are done with HTTP between peers
12

Flooding: Old Gnutella

• Advantages:

• Totally decentralized, highly robust

• Disadvantages:

• Not scalable; the entire network can be

swamped with request (to alleviate this

problem, each request has a TTL)

• Especially hard on slow clients

• At some point broadcast traffic on Gnutella

exceeded 56kbps – what happened?

• Modem users were effectively cut off!

4

13

Flooding: Old Gnutella Details

• Basic message header
• Unique ID, TTL, Hops

• Message types
• Ping – probes network for other servents

• Pong – response to ping, contains IP addr, # of files, #
of Kbytes shared

• Query – search criteria + speed requirement of servent

• QueryHit – successful response to Query, contains addr
+ port to transfer from, speed of servent, number of
hits, hit results, servent ID

• Push – request to servent ID to initiate connection,
used to traverse firewalls

• Ping, Queries are flooded

• QueryHit, Pong, Push reverse path of previous
message 14

Flooding: Old Gnutella Example

Assume: m1’s neighbors are m2 and m3;

m3’s neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

E

E

15

Flooding: Gnutella, Kazaa

• Modifies the Gnutella protocol into two-level hierarchy
• Hybrid of Gnutella and Napster

• Supernodes

• Nodes that have better connection to Internet

• Act as temporary indexing servers for other nodes

• Help improve the stability of the network

• Standard nodes
• Connect to supernodes and report list of files

• Allows slower nodes to participate

• Search

• Broadcast (Gnutella-style) search across supernodes

• Disadvantages

• Kept a centralized registration allowed for law suits

16

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord

• Comparison of DHTs

5

17

Routing: Structured Approaches

• Goal: make sure that an item (file) identified is always
found in a reasonable # of steps

• Abstraction: a distributed hash-table (DHT) data structure

• insert(id, item);

• item = query(id);

• Note: item can be anything: a data object, document, file, pointer
to a file…

• Proposals

• CAN (ICIR/Berkeley)

• Chord (MIT/Berkeley)

• Pastry (Rice)

• Tapestry (Berkeley)

• …

18

Routing: Chord

• Associate to each node and item a unique

id in an uni-dimensional space

• Properties

• Routing table size O(log(N)) , where N is the

total number of nodes

• Guarantees that a file is found in O(log(N))

steps

19

Aside: Hashing

• Advantages

• Let nodes be numbered 1..m

• Client uses a good hash function to map a URL to 1..m

• Say hash (url) = x, so, client fetches content from node

x

• No duplication – not being fault tolerant.

• One hop access

• Any problems?

• What happens if a node goes down?

• What happens if a node comes back up?

• What if different nodes have different views?

20

Robust hashing

• Let 90 documents, node 1..9, node 10 which was

dead is alive again

• % of documents in the wrong node?

• 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,

82-90

• Disruption coefficient =

• Unacceptable, use consistent hashing – idea behind

Akamai!

6

21

Consistent Hash

• “view” = subset of all hash buckets that are

visible

• Desired features

• Balanced – in any one view, load is equal

across buckets

• Smoothness – little impact on hash bucket

contents when buckets are added/removed

• Spread – small set of hash buckets that may

hold an object regardless of views

• Load – across all views # of objects assigned to

hash bucket is small
22

Consistent Hash – Example

• Smoothness addition of bucket does not cause much
movement between existing buckets

• Spread & Load small set of buckets that lie near object

• Balance no bucket is responsible for large number of
objects

• Construction

• Assign each of C hash buckets to
random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
circle

• Hash of object = closest
clockwise bucket

0

8

4 12
Bucket

14

23

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

24

Routing: Finger table - Faster Lookups

N80

1/8

1/16
1/32
1/64
1/128

7

25

Routing: Chord Summary

• Assume identifier space is 0…2m

• Each node maintains

• Finger table

• Entry i in the finger table of n is the first node that

succeeds or equals n + 2i

• Predecessor node

• An item identified by id is stored on the

successor node of id

26

Routing: Chord Example

• Assume an
identifier space
0..8

• Node n1:(1)
joins all entries
in its finger table
are initialized to
itself

0

1

2

3

4

5

6

7

i id+2
i
succ

0 2 1

1 3 1
2 5 1

Succ. Table

27

Routing: Chord Example

• Node n2:(3) joins

0

1

2

3

4

5

6

7

i id+2
i
succ

0 2 2

1 3 1
2 5 1

Succ. Table

i id+2
i
succ

0 3 1

1 4 1
2 6 1

Succ. Table

28

Routing: Chord Example

• Nodes n3:(0), n4:(6)
join

0

1

2

3

4

5

6

7

i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

8

29

Routing: Chord Examples

• Nodes: n1:(1), n2(3),
n3(0), n4(6)

• Items: f1:(7), f2:(2)
0

1

2

3

4

5

6

7 i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

30

Routing: Query

• Upon receiving a
query for item id, a
node

• Check whether stores
the item locally

• If not, forwards the
query to the largest
node in its successor
table that does not
exceed id

0

1

2

3

4

5

6

7 i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

query(7)

31

What can DHTs do for us?

• Distributed object lookup

• Based on object ID

• De-centralized file systems

• CFS, PAST, Ivy

• Application Layer Multicast

• Scribe, Bayeux, Splitstream

• Databases

• PIER

32

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord

• Comparison of DHTs

9

33

Comparison

• Many proposals for DHTs
• Tapestry (UCB) -- Symphony (Stanford) -- 1hop (MIT)

• Pastry (MSR, Rice) -- Tangle (UCB) -- conChord (MIT)

• Chord (MIT, UCB) -- SkipNet (MSR,UW) -- Apocrypha (Stanford)

• CAN (UCB, ICSI) -- Bamboo (UCB) -- LAND (Hebrew Univ.)

• Viceroy (Technion) -- Hieras (U.Cinn) -- ODRI (TexasA&M)

• Kademlia (NYU) -- Sprout (Stanford)

• Kelips (Cornell) -- Calot (Rochester)

• Koorde (MIT) -- JXTA’s (Sun)

• What are the right design choices? Effect on

performance?

34

Deconstructing DHTs

Two observations:

1. Common approach

• N nodes; each labeled with a virtual identifier (128 bits)

• define “distance” function on the identifiers

• routing works to reduce the distance to the destination

2. DHTs differ primarily in their definition of “distance”
• typically derived from (loose) notion of a routing geometry

35

DHT Routing Geometries

• Geometries:

• Tree (Plaxton, Tapestry)

• Ring (Chord)

• Hypercube (CAN)

• XOR (Kademlia)

• Hybrid (Pastry)

• What is the impact of geometry on routing?

36

Tree (Plaxton, Tapestry)

Geometry
• nodes are leaves in a binary tree

• distance = height of the smallest common subtree

• logN neighbors in subtrees at distance 1,2,…,logN

001 000 011 010 101 100 111 110

10

37

Hypercube (CAN)

000

100

001

010

110 111

011

101

Geometry
• nodes are the corners of a hypercube

• distance = #matching bits in the IDs of two nodes

• logN neighbors per node; each at distance=1 away

38

Ring (Chord)

Geometry
• nodes are points on a ring

• distance = numeric distance between two node IDs

• logN neighbors exponentially spaced over 0…N

000

101 011

010

001

110

111

100

39

Hybrid (Pastry)

Geometry:

• combination of a tree and ring

• two distance metrics

• default routing uses tree; fallback to ring under failures

• neighbors picked as on the tree

40

XOR (Kademlia)

00 01 11 10

01 11 10 00

Geometry:

• distance(A,B) = A XOR B

• logN neighbors per node spaced exponentially

• not a ring because there is no single consistent

ordering of all the nodes

11

41

Geometry’s Impact on Routing

• Routing
• Neighbor selection: how a node picks its routing entries

• Route selection: how a node picks the next hop

• Proposed metric: flexibility

• amount of freedom to choose neighbors and next-hop paths

• FNS: flexibility in neighbor selection

• FRS: flexibility in route selection

• intuition: captures ability to “tune” DHT performance

• single predictor metric dependent only on routing issues

42

FRS for Ring Geometry

• Chord algorithm picks neighbor closest to
destination

• A different algorithm picks the best of alternate
paths

000

101

100

011

010

001

110

111 110

43

FNS for Ring Geometry

• Chord algorithm picks ith neighbor at 2i distance

• A different algorithm picks ith neighbor from [2i ,
2i+1)

000

101

100

011

010

001

110

111

44

Flexibility: at a Glance

Flexibility Ordering of Geometries

Neighbors

(FNS)

Hypercube << Tree, XOR, Ring, Hybrid

 (1) (2i-1)

Routes

(FRS)

Tree << XOR, Hybrid < Hypercube < Ring

 (1) (logN/2) (logN/2) (logN)

12

46

Geometry Flexibility Performance?

Validate over three performance metrics:

1. resilience

2. path latency

3. path convergence

Metrics address two typical concerns:

• ability to handle node failure

• ability to incorporate proximity into overlay
routing

47

Analysis of Static Resilience

Two aspects of robust routing
• Dynamic Recovery : how quickly routing state is

recovered after failures

• Static Resilience : how well the network routes before
recovery finishes
• captures how quickly recovery algorithms need to work

• depends on FRS

Evaluation:
• Fail a fraction of nodes, without recovering any state

• Metric: % Paths Failed

48

Does flexibility affect static resilience?

Tree << XOR Hybrid < Hypercube < Ring

 Flexibility in Route Selection matters for Static Resilience

49

Which is more effective, FNS or FRS?

Plain << FRS << FNS FNS+FRS
Neighbor Selection is much better than Route

Selection

13

50

Does Geometry affect performance of FNS
or FRS?

No, performance of FNS/FRS is independent of Geometry
 A Geometry s support for neighbor selection is crucial

51

Understanding DHT Routing: Conclusion

• What makes for a “good” DHT?

• one answer: a flexible routing geometry

• Result: Ring is most flexible

• Why not the Ring?

