15-744: Computer Networking I

I

L-17 DNS and the Web

DNS and the Web

| I I . I .
* DNS
e CDNs
* Readings
* DNS Performance and the Effectiveness of
Caching

» Development of the Domain Name System

Naming

| S S S
* How do we efficiently locate resources?
* DNS: name - IP address
* Service location: description > host
» Other issues
* How do we scale these to the wide area?
» How to choose among similar services?

Nl
S e ?
Y

a
"

Overview

* DNS

» Server Selection and CDNs

" A
/+§>7
Y

a
o

Obvious Solutions (1)

Why not centralize DNS?

* Single point of failure

Traffic volume

Distant centralized database
Single point of update

Doesn’t scale!

B

£
'}[vfh
o

lZI

2,
Obvious Solutions (2) v

| I I I L
Why not use /etc/hosts?
 Original Name to Address Mapping
» Flat namespace
* /etc/hosts
* SRI kept main copy
» Downloaded regularly
» Count of hosts was increasing: machine per
domain = machine per user
* Many more downloads
* Many more updates

Domain Name System Goals

 Basically building a wide area distributed
database
 Scalability
» Decentralized maintenance
* Robustness
* Global scope
« Names mean the same thing everywhere
« Don't need
e Atomicity
e Strong consistency

DNS Records jege,

RR format: (class, name, value, type, ttl)

« DB contains tuples called resource records (RRs)
» Classes = Internet (IN), Chaosnet (CH), etc.
» Each class defines value associated with type

Type=CNAME
name is an alias name for
some “canonical” (the real)
name

Type=A
name is hostname
value is IP address

Type=NS value is canonical name
name is domain (e.g. foo.com) Type=MX
value is name of authoritative
name server for this domain

value is hostname of
mailserver associated with
name

o

DNS Design: Hlerarchy Definitions j‘,'}:;
I . I . L
e Each node in hierarchy
stores a list of names that
root end with same suffix
org « Suffix = path up tree
net edu com uk * E.g., given this tree, where
would following be stored:
gwu ucb cmu bu mit ¢ Fred.com
s oce e Fred.edu
* Fred.cmu.edu
cmcl « Fred.cmcl.cs.cmu.edu

* Fred.cs.mit.edu

DNS Design: Cont. Ve

. Zones are created by convincing owner node to
create/delegate a subzone
« Records within zone stored multiple redundant name
servers
« Primary/master name server updated manually
« Secondary/redundant servers updated by zone transfer

of name space
« Zone transfer is a bulk transfer of the “configuration” of a DNS

server — uses TCP to ensure reliability
» Example:
¢ CS.CMU.EDU created by CMU.EDU administrators

DNS Design: Zone Definitions

e Zone = contiguous
section of name space

e E.g., Complete tree,
single node or subtree

¢ A zone has an associated
set of name servers

root

ca

edu com uk

Subtree

Single node

Complete
Tree

Servers/Resolvers

| I S S L
» Each host has a resolver
 Typically a library that applications can link to
» Local name servers hand-configured (e.g. /etc/
resolv.conf)
 Name servers
« Either responsible for some zone or...

* Local servers
« Do lookup of distant host names for local hosts

« Typically answer queries about local zone

DNS: Root Name Servers

| I .
* Responsible for
“root” zone

» Approx. dozen root
name servers
worldwide

 Currently {a-m}.root-
servers.net

* Local name servers
contact root servers
when they cannot
resolve a name

« Configured with well-
known root servers

=7
Y

Q - 2

N d Y
- - -
DNS Root Servers e

E-NASA Moffet FiWd CA
F4SC Woodside CA

M-WIDE Kelo

USC Marina delRey CA

BLISA.
LDISAUSC Marina deRey CA

Designation, Responsibility, and Locations

1HORDU Stockholm

KLRXCRIPE London

A YA
CPSI Herndon VA
DUMD College Pk MD
G.DISABoeing Vienna VA
HUSArmy Aberdesn MO
JANSF.NSI Herndon VA

Lookup Methods

Recursive query:

« Server goes out and
searches for more info
(recursive)

e Only returns final answer
or “not found”

Iterative query:

* Server responds with as
much as it knows
(iterative)

* “l don’t know this name,
but ask this server”

Workload impact on choice?

* Local server typically does
recursive

» Root/distant server does
iterative

local name server
dns.eurecom.fr

requesting host
surf.eurecom.fr

intermediate name server
dns.urlhass.edu

5 Gaurhomauve name
server

dns.cs.umass.edu

gaia.cs.umass.edu

”

b)
Typlcal Resolution jSy e

- - - -

- i root & edu
www.cs.cmu.edu c‘5~°m“ S DN server
.CS. N \N\N\N ed“
A
= A
— or——t ns1.cmu.edu
Client Local > N81.cs.cmu eqy DNS server
DNS server 2
‘V%\\/ ns1.cs.cmu.edu
oty DNS
server
16
?

X
Workload and Caching josey

- - - -

. What workload do you expect for different servers/names?
« Why might this be a problem? How can we solve this problem?

< DNS responses are cached
Quick response for repeated translations

« Other queries may reuse some parts of lookup

* NS records for domains

« DNS negative queries are cached
« Don't have to repeat past mistakes

« E.g. misspellings, search strings in resolv.conf

e Cached data periodically times out

« Lifetime (TTL) of data controlled by owner of data

¢ TTL passed with every record

Typical Resolution Ve
[I I I L

root & edu

eV 1
www.cs.cmu.edu S o DNS server
g

ns1.cmu.edu

NSnsTesemy edﬁ

Subsequent Lookup Example RO
- I - - _—
root & edu
DNS server

ftp.cs.cmu.edu

Client Local DNS server
DNS server
M, ns1.cs.cmu.edu
oty DNS
server
20
oy 2 A
1 1l o /h R,
Reliability S
— - - - —

* DNS servers are replicated
« Name service available if = one replica is up
¢ Queries can be load balanced between replicas
» UDP used for queries
« Need reliability - must implement this on top of UDP!
¢ Why not just use TCP?
» Try alternate servers on timeout
¢ Exponential backoff when retrying same server
« Same identifier for all queries
e Don'’t care which server responds

L 7 cmu.edu
, Local Ces DNS server
Client DNS server %"s%
'70\\//5 cs.cmu.edu
‘90’(7/. . DNS
server
21
oy 2 A
FI
Reverse Name Lookup T3

» 128.2.206.138?
» Lookup 138.206.2.128.in-addr.arpa
* Why is the address reversed?
» Happens to be www.intel-iris.net and
mammoth.cmcl.cs.cmu.edu - what will reverse
lookup return? Both?

¢ Should only return name that reflects address
allocation mechanism

Prefetching e
| I I I .

 Name servers can add additional data to
any response

* Typically used for prefetching

+ CNAME/MXINS typically point to another host
name

» Responses include address of host referred to
in “additional section”

/4‘;\7
N oy
L™

Root Zone

| I S S

» Generic Top Level Domains (gTLD)
=.com, .net, .org, etc...

» Country Code Top Level Domain (ccTLD)
= .us, .ca, .fi, .uk, etc...

* Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
 Load on root servers was growing quickly!

* Moving .com, .net, .org off root servers was
clearly necessary to reduce load - done Aug
2000

NP

New gTLDs v
| S S S L
« .info > general info

» .biz - businesses

» .aero - air-transport industry

e .coop - husiness cooperatives

e .name - individuals

e .pro = accountants, lawyers, and physicians

e .museum > museums

« Only new one actives so far = .info, .biz, .name

New Registrars v3e0d

» Network Solutions (NSI) used to handle all
registrations, root servers, etc...
* Clearly not the democratic (Internet) way

» Large number of registrars that can create new
domains = However, NSI still handle root
servers

DNS Experience Y
|

» 23% of lookups with no answer
* Retransmit aggressively - most packets in trace for
unanswered lookups!
¢ Correct answers tend to come back quickly/with few
retries
* 10 - 42% negative answers > most = no name
exists
« Inverse lookups and bogus NS records
» Worst 10% lookup latency got much worse
» Median 85>97, 90" percentile 447>1176
* Increasing share of low TTL records - what is
happening to caching?

DNS Experience Yol

| I S S L

 Hit rate for DNS = 80% > 1-(#DNS/#connections)
» Most Internet traffic is Web

» What does a typical page look like? > average of 4-5
imbedded objects = needs 4-5 transfers - accounts
for 80% hit rate!

e 70% hit rate for NS records - i.e. don’t go to root/
gTLD servers
* NS TTLs are much longer than ATTLs
* NS record caching is much more important to scalability
« Name distribution = Zipf-like = 1/x2
* Arecords = TTLs = 10 minutes similar to TTLs =
infinite
¢ 10 client hit rate = 1000+ client hit rate

Some Interesting Alternatives X

e CoDNS
e Lookup failures
» Packet loss
* LDNS overloading
* Cron jobs
» Maintenance problems
¢ Cooperative name lookup scheme
« If local server OK, use local server
¢ When failing, ask peers to do lookup

e Push DNS
« Top of DNS hierarchy is relatively stable
¢ Why not replicate much more widely?

- qu/\/ﬂ {:j
Overview e,
| I I . I . L
* DNS

+ Server selection and CDNs

?

oy e

Server Selection ‘,'\L:{
[I . I . I . L

e Service is replicated in many places in network

« How to direct clients to a particular server?
 As part of routing - anycast, cluster load balancing
» As part of application > HTTP redirect
 As part of naming > DNS

* Which server?
» Lowest load - to balance load on servers

 Best performance > to improve client performance
« Based on Geography? RTT? Throughput? Load?
» Any alive node -> to provide fault tolerance

Q //D \
CDN ey
| S S S L
* Replicate content on many servers
» Challenges
» How to replicate content
» Where to replicate content
» How to find replicated content
* How to choose among known replicas
» How to direct clients towards replica
* DNS, HTTP 304 response, anycast, etc.
» Akamai
32
oy ® A
. R,
Routing Based e
| S S S L

* Anycast
» Give service a single IP address
» Each node implementing service advertises
route to address

» Packets get routed from client to “closest”
service node
* Closest is defined by routing metrics
» May not mirror performance/application needs

» What about the stability of routes?

- q::\lﬂ {:;
Routing Based ey
| I I . I . L

* Cluster load balancing

» Router in front of cluster of nodes directs packets to
server
» Can only look at global address (L3 switching)
» Often want to do this on a connection by connection
basis — why?
« Forces router to keep per connection state
L4 switching — transport headers, port numbers
* How to choose server
» Easiest to decide based on arrival of first packet in exchange
 Primarily based on local load

¢ Can be based on later packets (e.g. HTTP Get request) but
makes system more complex (L7 switching)

Application Based =
| S S S L

* HTTP supports simple way to indicate that Web
page has moved
» Server gets Get request from client

» Decides which server is best suited for particular client
and object

e Returns HTTP redirect to that server
« Can make informed application specific decision
* May introduce additional overhead - multiple
connection setup, name lookups, etc.

* While good solution in general HTTP Redirect has
some design flaws — especially with current
browsers?

Naming Based Y
[I -
» Client does name lookup for service
« Name server chooses appropriate server address
* What information can it base decision on?

¢ Server load/location - must be collected

« Name service client

 Typically the local name server for client

¢ Round-robin

« Randomly choose replica

« Avoid hot-spots
¢ [Semi-]static metrics

« Geography

¢ Route metrics

* How well would these work?

oy e

/

How Akamai Works pu
| I . I . I . L

 Clients fetch html document from primary server
¢ E.g. fetch index.html from cnn.com
» URLs for replicated content are replaced in html
¢ E.g. replaced with
<img src="http://a73.g.akamaitech.net/7/23/cnn.com/af/
x.gif"™>
» Client is forced to resolve axXYZ.g.akamaitech.net
hostname

s

%

How Akamai Works e

| I S
» How is content replicated?

» Akamai only replicates static content

» Serves about 7% of the Internet traffic !
» Modified name contains original file
» Akamai server is asked for content

« First checks local cache

* If not in cache, requests file from primary server
and caches file

How Akamai Works s
| I . I . I . L

* Root server gives NS record for akamai.net
+ Akamai.net name server returns NS record for
g.akamaitech.net

¢ Name server chosen to be in region of client's name
server

e TTLis large
» G.akamaitech.net nameserver choses server in
region
¢ Should try to chose server that has file in cache - How
to choose?
¢ Uses aXYZ name and consistent hash
e TTL is small

40

?
o e
/
]

Robust hashing Y

¢
| I I I .

¢ Let 90 documents, node 1..9, node 10 which was
dead is alive again
* 9% of documents in the wrong node?
* 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90
« Disruption coefficient = %%

¢ Unacceptable, use consistent hashing — idea behind
Akamai!

s

%

. QP »
Hashing o ey
| I S S L
¢ Advantages
 Let the CDN nodes are numbered 1..m
» Client uses a good hash function to map a URLto 1..m
 Say hash (url) = x, so, client fetches content from node
X
» No duplication — not being fault tolerant.
» One hop access
* Any problems?
« What happens if a node goes down?
» What happens if a node comes back up?
» What if different nodes have different views?
41
oy £ A
. f5 R
Consistent Hash Juses
| I S S L

» “view” = subset of all hash buckets that are
visible
» Desired features

» Balanced — in any one view, load is equal

across buckets

» Smoothness - little impact on hash bucket
contents when buckets are added/removed

» Spread — small set of hash buckets that may
hold an object regardless of views

» Load — across all views # of objects assigned to
hash bucket is small

10

Consistent Hash — Example o

7

H\F
“\ﬁ/}‘
Ca™

» Construction

» Assign each of C hash buckets to
random points on mod 2" circle,
where, hash key size = n Bucket

’) 12
* Map object to random position on
circle
j *8

* Hash of object = closest

=
.J>

/—.\

clockwise bucket

* Smoothness = addition of bucket does not cause much
movement between existing buckets

« Spread & Load - small set of buckets that lie near object

« Balance - no bucket is responsible for large number of
objects

44

How Akamai Works jelie;
o — - 71 71 —

cnn.com (content provider) DNS root server Akamai server

Get foo.jpg
L (11

l Akamai high-level DNS server
m

l Akamai low-level DNS server
m

Akamai server

End-user 12 —
Get /cnn.com/foo.jpg | "!

Akamai — Subsequent Requests I

cnn.com (content provider) DNS root server Akamai server

higg 1112 l Akamai high-level DNS server
m

74 l Akamai low-level DNS server

l!l
B °
Akamai server
- 9 .

End-user 12
ul

Get /cnn.com/foo.jpg

46

I
Coral An Open CDN Y
I S S L
"6'&5;;'.'5'@ N
Server : —
.............. —

—~
Pool resources to dissipate flash crowds

* Implement an open CDN

 Allow anybody to contribute

» Works with unmodified clients

» CDN only fetches once from origin server

g

47

11

CoralCDN components Juge
| I I . I . L

- Origin';

: Server
--------- X ')
? —/1
’7 Fetch data
httpprx from nearby

: AN,
Using CoralCDN Vo
| I . I . I . L
* Rewrite URLs into “Coralized” URLs
* www.Xx.com — www.x.com.nyud.net:8090
« Directs clients to Coral, which absorbs load
* Who might “Coralize” URLS?
* Web server operators Coralize URLs
» Coralized URLs posted to portals, mailing lists
¢ Users explicitly Coralize URLs
oy 2 A
Functionality needed jeser
| I . I . I . L

= DNS: Given network location of resolver, return a
proxy near the client

put (network info, self)
get (resolver info) — {proxies}

m HTTP: Given URL, find proxy caching object,
preferably one nearby

put (URL, self)
get (URL) — {proxies}

dnssrv
DNS Redirection -
Return proxy. T l Cooperative
preferably one Web Caching
near client Resolver
Browser
www.x.com.nyud.net .
oy 2 A
/R
Use a DHT? ey
— o - - —

» Supports put/get interface using key-based routing
» Problems with using DHTs as given
NYC Japan

o - Lookup latency
Germany

. Transfer latency

. Hotspots

12

Coral Contributions

 Self-organizing clusters of nodes
* NYU and Columbia prefer one another to Germany

¢ Rate-limiting mechanism

» Everybody caching and fetching same URL does not
overload any node in system

+ Decentralized DNS Redirection
» Works with unmodified clients

No centralized management or a priori knowledge of
proxies’ locations or network configurations

13

