
1

15-744: Computer Networking

L-17 DNS and the Web

2

DNS and the Web

• DNS

• CDNs

• Readings

• DNS Performance and the Effectiveness of

Caching

• Development of the Domain Name System

3

Naming

• How do we efficiently locate resources?

• DNS: name IP address

• Service location: description host

• Other issues

• How do we scale these to the wide area?

• How to choose among similar services?

4

Overview

• DNS

•

• Server Selection and CDNs

2

5

Obvious Solutions (1)

Why not centralize DNS?

• Single point of failure

• Traffic volume

• Distant centralized database

• Single point of update

• Doesn’t scale!

6

Obvious Solutions (2)

Why not use /etc/hosts?

• Original Name to Address Mapping

• Flat namespace

• /etc/hosts

• SRI kept main copy

• Downloaded regularly

• Count of hosts was increasing: machine per
domain machine per user
• Many more downloads

• Many more updates

7

Domain Name System Goals

• Basically building a wide area distributed

database

• Scalability

• Decentralized maintenance

• Robustness

• Global scope

• Names mean the same thing everywhere

• Don’t need

• Atomicity

• Strong consistency

8

DNS Records

RR format: (class, name, value, type, ttl)

• DB contains tuples called resource records (RRs)

• Classes = Internet (IN), Chaosnet (CH), etc.

• Each class defines value associated with type

FOR IN class:

• Type=A

• name is hostname

• value is IP address

• Type=NS

• name is domain (e.g. foo.com)

• value is name of authoritative
name server for this domain

• Type=CNAME

• name is an alias name for

some “canonical” (the real)

name

• value is canonical name

• Type=MX

• value is hostname of

mailserver associated with
name

3

9

DNS Design: Hierarchy Definitions

root

edu net

org
uk com

gwu ucb cmu bu mit

cs ece

cmcl

• Each node in hierarchy

stores a list of names that

end with same suffix
• Suffix = path up tree

• E.g., given this tree, where

would following be stored:

• Fred.com

• Fred.edu
• Fred.cmu.edu

• Fred.cmcl.cs.cmu.edu

• Fred.cs.mit.edu

10

DNS Design: Zone Definitions

root

edu net

org
uk com

ca

gwu ucb cmu bu mit

cs ece

cmcl Single node

Subtree

Complete

Tree

• Zone = contiguous

section of name space

• E.g., Complete tree,
single node or subtree

• A zone has an associated

set of name servers

11

DNS Design: Cont.

• Zones are created by convincing owner node to

create/delegate a subzone

• Records within zone stored multiple redundant name

servers

• Primary/master name server updated manually

• Secondary/redundant servers updated by zone transfer

of name space

• Zone transfer is a bulk transfer of the “configuration” of a DNS

server – uses TCP to ensure reliability

• Example:

• CS.CMU.EDU created by CMU.EDU administrators

12

Servers/Resolvers

• Each host has a resolver

• Typically a library that applications can link to

• Local name servers hand-configured (e.g. /etc/

resolv.conf)

• Name servers

• Either responsible for some zone or…

• Local servers

• Do lookup of distant host names for local hosts

• Typically answer queries about local zone

4

13

DNS: Root Name Servers

• Responsible for

“root” zone

• Approx. dozen root

name servers

worldwide

• Currently {a-m}.root-

servers.net

• Local name servers

contact root servers

when they cannot

resolve a name

• Configured with well-
known root servers

16

Typical Resolution

Client
Local

DNS server

root & edu

DNS server

ns1.cmu.edu

DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu

DNS

server

18

Lookup Methods

Recursive query:
• Server goes out and

searches for more info
(recursive)

• Only returns final answer
or “not found”

Iterative query:

• Server responds with as
much as it knows
(iterative)

• “I don’t know this name,
but ask this server”

Workload impact on choice?

• Local server typically does
recursive

• Root/distant server does
iterative

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6 authoritative name

server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

19

Workload and Caching

• What workload do you expect for different servers/names?
• Why might this be a problem? How can we solve this problem?

• DNS responses are cached

• Quick response for repeated translations

• Other queries may reuse some parts of lookup

• NS records for domains

• DNS negative queries are cached

• Don’t have to repeat past mistakes

• E.g. misspellings, search strings in resolv.conf

• Cached data periodically times out

• Lifetime (TTL) of data controlled by owner of data

• TTL passed with every record

5

20

Typical Resolution

Client
Local

DNS server

root & edu

DNS server

ns1.cmu.edu

DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu

DNS

server

21

Subsequent Lookup Example

Client
Local

DNS server

root & edu

DNS server

cmu.edu

DNS server

cs.cmu.edu

DNS

server

ftp.cs.cmu.edu

22

Reliability

• DNS servers are replicated

• Name service available if one replica is up

• Queries can be load balanced between replicas

• UDP used for queries

• Need reliability must implement this on top of UDP!

• Why not just use TCP?

• Try alternate servers on timeout

• Exponential backoff when retrying same server

• Same identifier for all queries

• Don’t care which server responds

23

Reverse Name Lookup

• 128.2.206.138?

• Lookup 138.206.2.128.in-addr.arpa

• Why is the address reversed?

• Happens to be www.intel-iris.net and

mammoth.cmcl.cs.cmu.edu what will reverse

lookup return? Both?

• Should only return name that reflects address

allocation mechanism

6

24

Prefetching

• Name servers can add additional data to

any response

• Typically used for prefetching

• CNAME/MX/NS typically point to another host

name

• Responses include address of host referred to

in “additional section”

25

Root Zone

• Generic Top Level Domains (gTLD)
= .com, .net, .org, etc…

• Country Code Top Level Domain (ccTLD)
= .us, .ca, .fi, .uk, etc…

• Root server ({a-m}.root-servers.net) also
used to cover gTLD domains

• Load on root servers was growing quickly!

• Moving .com, .net, .org off root servers was
clearly necessary to reduce load done Aug
2000

26

New gTLDs

• .info general info

• .biz businesses

• .aero air-transport industry

• .coop business cooperatives

• .name individuals

• .pro accountants, lawyers, and physicians

• .museum museums

• Only new one actives so far = .info, .biz, .name

27

New Registrars

• Network Solutions (NSI) used to handle all

registrations, root servers, etc…

• Clearly not the democratic (Internet) way

• Large number of registrars that can create new

domains However, NSI still handle root

servers

7

28

DNS Experience

• 23% of lookups with no answer
• Retransmit aggressively most packets in trace for

unanswered lookups!

• Correct answers tend to come back quickly/with few
retries

• 10 - 42% negative answers most = no name
exists
• Inverse lookups and bogus NS records

• Worst 10% lookup latency got much worse

• Median 85 97, 90th percentile 447 1176

• Increasing share of low TTL records what is
happening to caching?

29

DNS Experience

• Hit rate for DNS = 80% 1-(#DNS/#connections)
• Most Internet traffic is Web

• What does a typical page look like? average of 4-5
imbedded objects needs 4-5 transfers accounts
for 80% hit rate!

• 70% hit rate for NS records i.e. don’t go to root/
gTLD servers
• NS TTLs are much longer than A TTLs

• NS record caching is much more important to scalability

• Name distribution = Zipf-like = 1/xa

• A records TTLs = 10 minutes similar to TTLs =
infinite

• 10 client hit rate = 1000+ client hit rate

Some Interesting Alternatives

• CoDNS
• Lookup failures

• Packet loss

• LDNS overloading

• Cron jobs

• Maintenance problems

• Cooperative name lookup scheme
• If local server OK, use local server
• When failing, ask peers to do lookup

• Push DNS
• Top of DNS hierarchy is relatively stable

• Why not replicate much more widely?

30 31

Overview

• DNS

• Server selection and CDNs

8

32

CDN

• Replicate content on many servers

• Challenges

• How to replicate content

• Where to replicate content

• How to find replicated content

• How to choose among known replicas

• How to direct clients towards replica

• DNS, HTTP 304 response, anycast, etc.

• Akamai

33

Server Selection

• Service is replicated in many places in network

• How to direct clients to a particular server?

• As part of routing anycast, cluster load balancing

• As part of application HTTP redirect

• As part of naming DNS

• Which server?

• Lowest load to balance load on servers

• Best performance to improve client performance

• Based on Geography? RTT? Throughput? Load?

• Any alive node to provide fault tolerance

34

Routing Based

• Anycast

• Give service a single IP address

• Each node implementing service advertises

route to address

• Packets get routed from client to “closest”

service node

• Closest is defined by routing metrics

• May not mirror performance/application needs

• What about the stability of routes?

35

Routing Based

• Cluster load balancing
• Router in front of cluster of nodes directs packets to

server

• Can only look at global address (L3 switching)

• Often want to do this on a connection by connection
basis – why?

• Forces router to keep per connection state

• L4 switching – transport headers, port numbers

• How to choose server

• Easiest to decide based on arrival of first packet in exchange

• Primarily based on local load

• Can be based on later packets (e.g. HTTP Get request) but
makes system more complex (L7 switching)

9

36

Application Based

• HTTP supports simple way to indicate that Web
page has moved

• Server gets Get request from client

• Decides which server is best suited for particular client
and object

• Returns HTTP redirect to that server

• Can make informed application specific decision

• May introduce additional overhead multiple
connection setup, name lookups, etc.

• While good solution in general HTTP Redirect has
some design flaws – especially with current
browsers?

37

Naming Based

• Client does name lookup for service

• Name server chooses appropriate server address

• What information can it base decision on?

• Server load/location must be collected

• Name service client

• Typically the local name server for client

• Round-robin

• Randomly choose replica

• Avoid hot-spots

• [Semi-]static metrics

• Geography

• Route metrics

• How well would these work?

38

How Akamai Works

• Clients fetch html document from primary server

• E.g. fetch index.html from cnn.com

• URLs for replicated content are replaced in html

• E.g. replaced with

<img src=“http://a73.g.akamaitech.net/7/23/cnn.com/af/

x.gif”>

• Client is forced to resolve aXYZ.g.akamaitech.net

hostname

39

How Akamai Works

• How is content replicated?

• Akamai only replicates static content

• Serves about 7% of the Internet traffic !

• Modified name contains original file

• Akamai server is asked for content

• First checks local cache

• If not in cache, requests file from primary server

and caches file

10

40

How Akamai Works

• Root server gives NS record for akamai.net

• Akamai.net name server returns NS record for
g.akamaitech.net

• Name server chosen to be in region of client’s name
server

• TTL is large

• G.akamaitech.net nameserver choses server in
region

• Should try to chose server that has file in cache - How
to choose?

• Uses aXYZ name and consistent hash

• TTL is small

41

Hashing

• Advantages

• Let the CDN nodes are numbered 1..m

• Client uses a good hash function to map a URL to 1..m

• Say hash (url) = x, so, client fetches content from node

x

• No duplication – not being fault tolerant.

• One hop access

• Any problems?

• What happens if a node goes down?

• What happens if a node comes back up?

• What if different nodes have different views?

42

Robust hashing

• Let 90 documents, node 1..9, node 10 which was

dead is alive again

• % of documents in the wrong node?

• 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,

82-90

• Disruption coefficient =

• Unacceptable, use consistent hashing – idea behind

Akamai!

43

Consistent Hash

• “view” = subset of all hash buckets that are

visible

• Desired features

• Balanced – in any one view, load is equal

across buckets

• Smoothness – little impact on hash bucket

contents when buckets are added/removed

• Spread – small set of hash buckets that may

hold an object regardless of views

• Load – across all views # of objects assigned to

hash bucket is small

11

44

Consistent Hash – Example

• Smoothness addition of bucket does not cause much
movement between existing buckets

• Spread & Load small set of buckets that lie near object

• Balance no bucket is responsible for large number of
objects

• Construction

• Assign each of C hash buckets to
random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
circle

• Hash of object = closest
clockwise bucket

0

8

4 12
Bucket

14

45

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6

7

8

9

12

Get

index.
html

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

46

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

7

8

9

12

Get

index.
html

Get /cnn.com/foo.jpg

Coral: An Open CDN

• Implement an open CDN

• Allow anybody to contribute

• Works with unmodified clients

• CDN only fetches once from origin server

Origin

Server

Coral

httpprx

dnssrv

Coral

httpprx

dnssrv

Coral

httpprx

dnssrv

Coral

httpprx

dnssrv

Coral

httpprx

dnssrv

Coral

httpprx

dnssrv

Browser

Browser

Browser

Browser

Pool resources to dissipate flash crowds

47

12

Using CoralCDN

• Rewrite URLs into “Coralized” URLs

• www.x.com www.x.com.nyud.net:8090

• Directs clients to Coral, which absorbs load

• Who might “Coralize” URLs?

• Web server operators Coralize URLs

• Coralized URLs posted to portals, mailing lists

• Users explicitly Coralize URLs

48

httpprx

dnssrv

Browser

Resolver

DNS Redirection

Return proxy,

preferably one

near client

Cooperative

Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data

from nearby

?

?

Origin

Server

49

Functionality needed

DNS: Given network location of resolver, return a
proxy near the client

 put (network info, self)

 get (resolver info) {proxies}

HTTP: Given URL, find proxy caching object,
preferably one nearby

 put (URL, self)

 get (URL) {proxies}

50

Use a DHT?

• Supports put/get interface using key-based routing

• Problems with using DHTs as given

• Lookup latency

• Transfer latency

• Hotspots

NYU Columbia

Germany

Japan NYC

NYC

51

13

Coral Contributions

• Self-organizing clusters of nodes

• NYU and Columbia prefer one another to Germany

• Rate-limiting mechanism

• Everybody caching and fetching same URL does not

overload any node in system

• Decentralized DNS Redirection

• Works with unmodified clients

No centralized management or a priori knowledge of

proxies’ locations or network configurations
52

