

Scalable Multicast

- Replication possible at any i3-server in the infrastructure.
- Tree construction can be done internally

Architectural Brittleness

- Hosts are tied to IP addresses
 Mobility and multi-homing pose problems
- Services are tied to hosts
 - A service is more than just one host: replication, migration, composition
- Packets might require processing at intermediaries before reaching destination
 - "Middleboxes" (NATs, firewalls, ...)

Internet Naming is Host-Centric

- Two global namespaces: DNS and IP addresses
- These namespaces are host-centric
 - IP addresses: network location of host
 - DNS names: domain of host
 - Both closely tied to an underlying structure
 - Motivated by host-centric applications

The Trouble with Host-Centric Names 🔆

- Host-centric names are fragile
 - If a name is based on mutable properties of its referent, it is fragile
 - Example: If Joe's Web page <u>www.berkeley.edu/</u> <u>~hippie</u> moves to <u>www.wallstreetstiffs.com/</u> <u>~yuppie</u>, Web links to his page break
- Fragile names constrain movement
 - IP addresses are not stable host names
 - DNS URLs are not stable data names

Delegation Primitive• Let hosts invoke, revoke off-path boxes• Receiver-invoked: sender resolves
receiver's EID to• An IP address or• An EID or sequence of EIDs• DOA header has destination stack of EIDs• Sender-invoked: push EID onto this stack• IP
hdr• Source EID
destination EID stack• transport hdr
body

A Bit More About DOA

- Incrementally deployable. Requires:
 - Changes to hosts and middleboxes
 - No changes to IP routers (design requirement)
 - Global resolution infrastructure for flat IDs
- Recall core properties:
 - Topology-independent, globally unique identifiers
 - Let end-hosts invoke and revoke middleboxes
- Recall goals: reduce harmful effects, permit new functions

Off-path Firewall: Benefits

- · Simplification for end-users who want it
 - Instead of a set of rules, one rule:
 - "Was this packet vetted by my FW provider?"
- Firewall can be anywhere, leading to:
 - Third-party service providers
 - Possible market for such services
 - Providers keeping abreast of new applications
- DOA enables this; doesn't mandate it.

What Should References Encode?

- Observe: if the object is allowed to change administrative domains, then the reference can't encode an administrative domain
- What can the reference encode?
 - Nothing about the object that might change!
 - Especially not the object's whereabouts!
- What kind of namespace should we use?

Goal #3: Automate Namespace Management

- Automated management implies no fighting over references
- DNS-based URLs do not satisfy this . . .

DNS is a Locus of Contention

- Used as a branding mechanism
 - tremendous legal combat
 - "name squatting", "typo squatting", "reverse hijacking", . . .
- ICANN and WIPO politics
 - technical coordinator inventing naming rights
 - · set-asides for misspelled trademarks
- Humans will always fight over names . . .

