
1

15-744: Computer Networking

L-7 Naming

2

Overview

• i3

• Layered naming

• DOA

• SFR

Multicast

S
1

C
1

C
2

S
2

R RP RR

RR

RP: Rendezvous

Point

Mobility

HA FA

Home Network

Network 5

5.0.0.1 12.0.0.4

Sender

Mobile

Node

5.0.0.3

2

5

i3: Motivation

• Today’s Internet based on point-to-point
abstraction

• Applications need more:
• Multicast

• Mobility

• Anycast

• Existing solutions:
• Change IP layer

• Overlays

So, what’s the problem?

A different solution for each service

The i3 solution

• Solution:
• Add an indirection layer on top of IP

• Implement using overlay networks

• Solution Components:
• Naming using “identifiers”

• Subscriptions using “triggers”

• DHT as the gluing substrate

6

Indirection

Every problem

in CS …

Only primitive

needed

i3: Rendezvous Communication

• Packets addressed to identifiers (“names”)

• Trigger=(Identifier, IP address): inserted by

receiver

7

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

Senders decoupled from receivers

8

i3: Service Model

• API

• sendPacket(id, p);

• insertTrigger(id, addr);

• removeTrigger(id, addr); //

optional

• Best-effort service model (like IP)

• Triggers periodically refreshed by end-hosts

• Reliability, congestion control, and flow-
control implemented at end-hosts

3

i3: Implementation

• Use a Distributed Hash Table

• Scalable, self-organizing, robust

• Suitable as a substrate for the Internet

9

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

DHT.put(id)

IP.route(R)

DHT.put(id)

10

Mobility and Multicast

• Mobility supported naturally

• End-host inserts trigger with new IP address,

and everything transparent to sender

• Robust, and supports location privacy

• Multicast

• All receivers insert triggers under same ID

• Sender uses that ID for sending

• Can optimize tree construction to balance load

Mobility

• The change of the receiver’s address

• from R to R’ is transparent to the sender

Multicast

• Every packet (id, data) is forwarded to each

receiver Ri that inserts the trigger (id, Ri)

4

13

Anycast

• Generalized matching

• First k-bits have to match, longest prefix match

among rest

Sender

(R1)

(R2)

(R3)

a b

a b1

a b2

a b3

Triggers

• Related triggers must be on same server

• Server selection (randomize last bits)

Generalization: Identifier Stack

• Stack of identifiers
• i3 routes packet through these identifiers

• Receivers
• trigger maps id to <stack of ids>

• Sender can also specify id-stack in packet

• Mechanism:
• first id used to match trigger

• rest added to the RHS of trigger

• recursively continued

14

Service Composition

• Receiver mediated: R sets up chain and
passes id_gif/jpg to sender: sender oblivious

• Sender-mediated: S can include (id_gif/jpg, ID)
in his packet: receiver oblivious

15

Sender

(GIF)

Receiver R

(JPG)

ID_GIF/JPG S_GIF/JPG
ID R

send((ID_GIF/JPG,ID), data)

S_GIF/JPG

send(ID, data) send(R, data)

Public, Private Triggers

• Servers publish their public ids: e.g., via

DNS

• Clients contact server using public ids, and

negotiate private ids used thereafter

• Useful:

• Efficiency -- private ids chosen on “close-by” i3-

servers

• Security -- private ids are shared-secrets

16

5

Scalable Multicast

• Replication possible at any i3-server in the

infrastructure.

• Tree construction can be done internally

17

R2

R1

R4
R3

g

 R2

g

 R1

g

x

x

 R4

x

 R3

(g, data)

18

Overview

• i3

• Layered naming

• DOA

• SFR

19

Architectural Brittleness

• Hosts are tied to IP addresses
• Mobility and multi-homing pose problems

• Services are tied to hosts
• A service is more than just one host: replication,

migration, composition

• Packets might require processing at
intermediaries before reaching destination
• “Middleboxes” (NATs, firewalls, …)

20

Naming Can Help

• Thesis: proper naming can cure some ills
• Layered naming provides layers of indirection and

shielding

• Many proposals advocate large-scale,
overarching architectural change
• Routers, end-hosts, services

• Proposal:
• Changes “only” hosts and name resolution

• Synthesis of much previous work

6

21

Internet Naming is Host-Centric

• Two global namespaces: DNS and IP
addresses

• These namespaces are host-centric

• IP addresses: network location of host

• DNS names: domain of host

• Both closely tied to an underlying structure

• Motivated by host-centric applications

22

The Trouble with Host-Centric Names

• Host-centric names are fragile

• If a name is based on mutable properties of its
referent, it is fragile

• Example: If Joe’s Web page www.berkeley.edu/
~hippie moves to www.wallstreetstiffs.com/
~yuppie, Web links to his page break

• Fragile names constrain movement

• IP addresses are not stable host names

• DNS URLs are not stable data names

23

Key Architectural Questions

1. Which entities should be named?

2. What should names look like?

3. What should names resolve to?

24

Name Services and Hosts Separately

• Service identifiers (SIDs) are host-
independent data names

• End-point identifiers (EIDs) are location-
independent host names

• Protocols bind to names, and resolve them
• Apps should use SIDs as data handles

• Transport connections should bind to EIDs

Binding principle: Names should bind protocols only

to relevant aspects of underlying structure

7

25

The Naming Layers

User-level descriptors

(e.g., search)

App session

App-specific search/lookup

returns SID

Transport

Resolves SID to EID

Opens transport conns

IP

Resolves EID to IP

Bind to EID

Use SID as handle

IP hdr EID TCP SID …
IP

Transport

App session

Application

26

SIDs and EIDs should be Flat

0xf436f0ab527bac9e8b100afeff394300

• Flat names impose no structure on entities

• Structured names stable only if name structure
matches natural structure of entities

• Can be resolved scalably using, e.g., DHTs

• Flat names can be used to name anything

• Once you have a large flat namespace, you
never need other global “handles”

Stable-name principle: A stable name should not

impose restrictions on the entity it names

27

Resolution

Service

Flat Names Enable Flexible Migration

<A HREF=

http://f012012/pub.pdf

>here is a paper

10.1.2.3

/docs/

20.2.4.6 (10.1.2.3,80,

/docs/) (20.2.4.6,80,

/~user/pubs/)

/~user/pubs/

• SID abstracts all object reachability information

• Objects: any granularity (files, directories)

• Benefit: Links (referrers) don’t break
Domain H

Domain Y

28

Flat Names are a Two-Edged Sword

• Global resolution infrastructure needed

• Perhaps as “managed DHT” infrastructure

• Lack of local name control

• Lack of locality

• Not user-friendly

• User-level descriptors are human-friendly

8

29

Overview

• i3

• Layered naming

• DOA

• SFR

Globally Unique Identifiers for Hosts

• Location-independent, flat, big namespace

• Hash of a public key

• These are called EIDs (e.g., 0xf12abc…)

• Carried in packets

DOA hdr

IP
hdr

transport hdr body source EID
destination EID

Delegation Primitive

• Let hosts invoke, revoke off-path boxes

• Receiver-invoked: sender resolves

receiver’s EID to

• An IP address or

• An EID or sequence of EIDs

• DOA header has destination stack of EIDs

• Sender-invoked: push EID onto this stack

IP
hdr

transport hdr body source EID
destination EID stack

DOA in a Nutshell

• End-host replies to source by resolving es

• Authenticity, performance: discussed in the

paper

Delegate
IP: j

<eh, j>

End-host
EID: eh
IP: ih

DHT
Process

Source
EID: es
IP: is

DOA Packet

IP
is j

transport body DOA
es eh

DOA

transport
DOA
es eh

9

A Bit More About DOA

• Incrementally deployable. Requires:

• Changes to hosts and middleboxes

• No changes to IP routers (design requirement)

• Global resolution infrastructure for flat IDs

• Recall core properties:

• Topology-independent, globally unique identifiers

• Let end-hosts invoke and revoke middleboxes

• Recall goals: reduce harmful effects, permit

new functions

Off-path Firewall

eh (ih, Rules)

Network

Stack

is j es [eFW eh]

ih j es eh

eh

<eh, eFW>
<eFW, j>

eFW

eFW

j

DHT

Source
EID: es
IP: is

Firewall

End-host

ih

j EID: eFW

EID: eh

Sign (MAC)

Verify

Off-path Firewall: Benefits

• Simplification for end-users who want it

• Instead of a set of rules, one rule:

• “Was this packet vetted by my FW provider?”

• Firewall can be anywhere, leading to:

• Third-party service providers

• Possible market for such services

• Providers keeping abreast of new applications

• DOA enables this; doesn’t mandate it.

Reincarnated NAT

• End-to-end communication

• Port fields not overloaded

• Especially useful when NATs are cascaded

is 5.1.9.9 es ed

ed

NATed network
DHT

Source
EID: es
IP: is

Destination
EID: ed

is 10.1.1.3 es ed

5.1.9.9 10.1.1.1 10.1.1.3

NAT

ed
10.1.1.3

10

37

Overview

• i3

• Layered naming

• DOA

• SFR

Introduction

• The Web depends on linking; links contain

references
click here

• Properties of DNS-based references

• encode administrative domain

• human-friendly

• These properties are problems!

Web Links Should Use Flat Identifiers

<A HREF=

http://isp.com/dog.jpg

>my friend’s dog

<A HREF=

http://f0120123112/

>my friend’s dog

Current Proposed

Status Quo

DNS
Browser

http:// <A HREF=

http://a.com/

dog.jpg>Spot

Web Page

Why not DNS?

“Reference
 Resolution
 Service”

11

Goal #1: Stable References

• In other words, links shouldn’t break

• DNS-based URLs are not stable . . .

Stable=“reference is invariant when
object moves”

Object Movement Breaks Links

• URLs hard-code a domain and a path

isp.com

“dog.jpg”

isp-2.com

“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http:// <A HREF=

http://isp.com/dog.jpg

>Spot

Object Movement Breaks Links, Cont’d

• Today’s solutions not stable:

• HTTP redirects

• need cooperation of original host

• Vanity domains, e.g.: internetjoe.org

• now owner can’t change

isp.com

“dog.jpg”

isp-2.com

“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http://
<A HREF=

http://isp.com/dog.jpg

>Spot

Goal #2: Supporting Object Replication

• Host replication relatively easy today

• But per-object replication requires:
• separate DNS name for each object

• virtual hosting so replica servers recognize names

• configuring DNS to refer to replica servers

isp.com

“/docs/foo.ps”

mit.edu

“~joe/foo.ps”

http://object26.org

12

What Should References Encode?

• Observe: if the object is allowed to change

administrative domains, then the reference

can’t encode an administrative domain

• What can the reference encode?

• Nothing about the object that might change!

• Especially not the object’s whereabouts!

• What kind of namespace should we use?

Goal #3: Automate Namespace

Management

• Automated management implies no fighting

over references

• DNS-based URLs do not satisfy this . . .

DNS is a Locus of Contention

• Used as a branding mechanism

• tremendous legal combat

• “name squatting”, “typo squatting”, “reverse

hijacking”, . . .

• ICANN and WIPO politics

• technical coordinator inventing naming rights

• set-asides for misspelled trademarks

• Humans will always fight over names . . .

<A HREF=

http://f012c1d/

>Spot
Managed DHT-

based

Infrastructure
(10.1.2.3,

80, /pics/

dog.gif)

o-record

10.1.2.3

Web Server

/pics/dog.gif

orec

SFR in a Nutshell

• API

• orec = get(tag);

• put(tag, orec);

• Anyone can put() or get()

