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i3: Motivation 

• Today’s Internet based on point-to-point 
abstraction 

• Applications need more: 
• Multicast 

• Mobility 

• Anycast 

• Existing solutions: 
• Change IP layer 

• Overlays 

So, what’s the problem? 

A different solution for each service 

The i3 solution 

• Solution:  
• Add an indirection layer on top of IP 

• Implement using overlay networks 

• Solution Components: 
• Naming using “identifiers”  

• Subscriptions using “triggers” 

• DHT as the gluing substrate 
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Indirection 

Every problem  

in CS …  

Only primitive 

needed 

i3: Rendezvous Communication 

• Packets addressed to identifiers (“names”) 

• Trigger=(Identifier, IP address): inserted by 

receiver 
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Sender Receiver (R) 

ID R 

trigger 

send(ID, data) 
send(R, data) 

Senders decoupled from receivers 
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i3: Service Model 

• API 

• sendPacket(id, p); 

• insertTrigger(id, addr); 

• removeTrigger(id, addr); // 

optional 

• Best-effort service model (like IP) 

• Triggers periodically refreshed by end-hosts 

• Reliability, congestion control, and flow-
control implemented at end-hosts 
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i3: Implementation 

• Use a Distributed Hash Table  

• Scalable, self-organizing, robust 

• Suitable as a substrate for the Internet 
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Sender Receiver (R) 

ID R 

trigger 

send(ID, data) 
send(R, data) 

DHT.put(id) 

IP.route(R) 

DHT.put(id) 
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Mobility and Multicast 

• Mobility supported naturally 

• End-host inserts trigger with new IP address, 

and everything transparent to sender 

• Robust, and supports location privacy 

• Multicast 

• All receivers insert triggers under same ID 

• Sender uses that ID for sending 

• Can optimize tree construction to balance load 

Mobility 

• The change of the receiver’s address  

• from R to R’ is transparent to the sender 

Multicast 

• Every packet (id, data) is forwarded to each 

receiver Ri that inserts the trigger (id, Ri) 



4 

13 

Anycast 

• Generalized matching 

• First k-bits have to match, longest prefix match 

among rest 

Sender 

(R1) 

(R2) 

(R3) 

a b 

a b1 

a b2 

a b3 

Triggers 

• Related triggers must be on same server 

• Server selection (randomize last bits) 

Generalization: Identifier Stack 

• Stack of identifiers 
• i3 routes packet through these identifiers 

• Receivers 
• trigger maps id to <stack of ids> 

• Sender can also specify id-stack in packet 

• Mechanism: 
• first id used to match trigger 

• rest added to the RHS of trigger  

• recursively continued 
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Service Composition 

• Receiver mediated: R sets up chain and 
passes id_gif/jpg to sender: sender oblivious 

• Sender-mediated: S can include (id_gif/jpg, ID) 
in his packet: receiver oblivious 
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Sender 

(GIF) 

Receiver R 

(JPG) 

ID_GIF/JPG S_GIF/JPG 
ID R 

send((ID_GIF/JPG,ID), data) 

S_GIF/JPG 

send(ID, data) send(R, data) 

Public, Private Triggers 

• Servers publish their public ids: e.g., via 

DNS 

• Clients contact server using public ids, and 

negotiate private ids used thereafter 

• Useful: 

• Efficiency -- private ids chosen on “close-by” i3-

servers 

• Security -- private ids are shared-secrets 

16 
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Scalable Multicast 

• Replication possible at any i3-server in the 

infrastructure.  

• Tree construction can be done internally 
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Architectural Brittleness 

• Hosts are tied to IP addresses 
• Mobility and multi-homing pose problems 

• Services are tied to hosts 
• A service is more than just one host: replication, 

migration, composition 

• Packets might require processing at 
intermediaries before reaching destination 
• “Middleboxes” (NATs, firewalls, …) 
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Naming Can Help 

• Thesis: proper naming can cure some ills 
• Layered naming provides layers of indirection and 

shielding 

• Many proposals advocate large-scale, 
overarching architectural change 
• Routers, end-hosts, services 

• Proposal: 
• Changes “only” hosts and name resolution 

• Synthesis of much previous work 
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Internet Naming is Host-Centric 

• Two global namespaces: DNS and IP 
addresses 

• These namespaces are host-centric 

• IP addresses: network location of host 

• DNS names: domain of host 

• Both closely tied to an underlying structure 

• Motivated by host-centric applications 
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The Trouble with Host-Centric Names 

• Host-centric names are fragile 

• If a name is based on mutable properties of its 
referent, it is fragile 

• Example: If Joe’s Web page www.berkeley.edu/
~hippie moves to www.wallstreetstiffs.com/
~yuppie, Web links to his page break 

• Fragile names constrain movement 

• IP addresses are not stable host names 

• DNS URLs are not stable data names 
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Key Architectural Questions 

1. Which entities should be named? 

2. What should names look like? 

3. What should names resolve to? 
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Name Services and Hosts Separately 

• Service identifiers (SIDs) are host-
independent data names 

• End-point identifiers (EIDs) are location-
independent host names 

• Protocols bind to names, and resolve them 
• Apps should use SIDs as data handles 

• Transport connections should bind to EIDs 

Binding principle: Names should bind protocols only 

to relevant aspects of underlying structure  
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The Naming Layers 

User-level descriptors 

(e.g., search) 

App session 

App-specific search/lookup 

returns SID 

Transport 

Resolves SID to EID 

Opens transport conns 

IP 

Resolves EID to IP 

Bind to EID 

Use SID as handle 

IP hdr  EID TCP SID … 
IP 

Transport 

App session 

Application 
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SIDs and EIDs should be Flat 

0xf436f0ab527bac9e8b100afeff394300 

• Flat names impose no structure on entities 

• Structured names stable only if name structure 
matches natural structure of entities 

• Can be resolved scalably using, e.g., DHTs 

• Flat names can be used to name anything 

• Once you have a large flat namespace, you 
never need other global “handles” 

Stable-name principle: A stable name should not  

impose restrictions on the entity it names 
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Resolution 

Service 

Flat Names Enable Flexible Migration 

<A HREF= 

http://f012012/pub.pdf 

>here is a paper</A> 

10.1.2.3 

/docs/

20.2.4.6 (10.1.2.3,80, 

/docs/) (20.2.4.6,80, 

/~user/pubs/) 

/~user/pubs/

• SID abstracts all object reachability information 

• Objects: any granularity (files, directories) 

• Benefit: Links (referrers) don’t break 
Domain H 

Domain Y 
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Flat Names are a Two-Edged Sword 

• Global resolution infrastructure needed 

• Perhaps as “managed DHT” infrastructure 

• Lack of local name control 

• Lack of locality 

• Not user-friendly 

• User-level descriptors are human-friendly 
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Overview 

• i3 

• Layered naming 

• DOA 

• SFR 

Globally Unique Identifiers for Hosts 

• Location-independent, flat, big namespace 

• Hash of a public key 

• These are called EIDs (e.g., 0xf12abc…) 

• Carried in packets 

DOA hdr 

IP 
hdr 

transport hdr body source EID 
destination EID 

Delegation Primitive 

• Let hosts invoke, revoke off-path boxes 

• Receiver-invoked: sender resolves 

receiver’s EID to 

• An IP address or 

• An EID or sequence of EIDs 

• DOA header has destination stack of EIDs 

• Sender-invoked: push EID onto this stack 

IP 
hdr 

transport hdr body source EID 
destination EID stack 

DOA in a Nutshell 

• End-host replies to source by resolving es 

• Authenticity, performance: discussed in the 

paper 

Delegate 
IP: j 

<eh, j> 

End-host 
EID: eh 
IP: ih 

DHT 
Process 

Source 
EID: es 
IP: is 

DOA Packet 

IP 
is    j 

transport body DOA 
es   eh 

DOA 

transport 
DOA 
es   eh 
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A Bit More About DOA 

• Incrementally deployable. Requires: 

• Changes to hosts and middleboxes  

• No changes to IP routers (design requirement) 

• Global resolution infrastructure for flat IDs 

• Recall core properties: 

• Topology-independent, globally unique identifiers 

• Let end-hosts invoke and revoke middleboxes 

• Recall goals: reduce harmful effects, permit 

new functions 

Off-path Firewall 

eh  (ih, Rules) 

Network 

Stack 

is j es [eFW eh]  

ih j es eh 

eh 

<eh, eFW> 
<eFW, j> 

eFW 

eFW 

j 

DHT 

Source 
EID: es 
IP: is 

Firewall 

End-host 

ih 

j EID: eFW 

EID: eh 

Sign (MAC) 

Verify 

Off-path Firewall: Benefits 

• Simplification for end-users who want it 

• Instead of a set of rules, one rule: 

• “Was this packet vetted by my FW provider?” 

• Firewall can be anywhere, leading to: 

• Third-party service providers 

• Possible market for such services 

• Providers keeping abreast of new applications 

• DOA enables this; doesn’t mandate it. 

Reincarnated NAT 

• End-to-end communication 

• Port fields not overloaded 

• Especially useful when NATs are cascaded 

is 5.1.9.9 es ed 

ed 

NATed network 
DHT 

Source 
EID: es 
IP: is 

Destination 
EID: ed 

is 10.1.1.3 es ed 

5.1.9.9 10.1.1.1 10.1.1.3 

NAT 

ed   
10.1.1.3 
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Introduction 

• The Web depends on linking; links contain 

references 
<A HREF=http://domain_name/path_name>click here</A> 

• Properties of DNS-based references 

• encode administrative domain 

• human-friendly 

• These properties are problems! 

Web Links Should Use Flat Identifiers 

<A HREF= 

http://isp.com/dog.jpg 

>my friend’s dog</A> 

<A HREF= 

http://f0120123112/  

>my friend’s dog</A> 

Current Proposed 

Status Quo 

DNS 
Browser 

http:// <A HREF= 

http://a.com/

dog.jpg>Spot</A> 

Web Page 

Why not DNS? 

“Reference 
 Resolution 
 Service” 
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Goal #1: Stable References  

• In other words, links shouldn’t break 

• DNS-based URLs are not stable . . . 

Stable=“reference is invariant when 
object moves” 

Object Movement Breaks Links  

• URLs hard-code a domain and a path 

isp.com 

“dog.jpg” 

isp-2.com 

“spot.jpg” 

“HTTP 404” 

HTTP GET: 
/dog.jpg 

Browser 

http:// <A HREF= 

http://isp.com/dog.jpg 

>Spot</A> 

Object Movement Breaks Links, Cont’d 

• Today’s solutions not stable: 

• HTTP redirects 

• need cooperation of original host 

• Vanity domains, e.g.: internetjoe.org 

• now owner can’t change 

isp.com 

“dog.jpg” 

isp-2.com 

“spot.jpg” 

“HTTP 404” 

HTTP GET: 
/dog.jpg 

Browser 

http:// 
<A HREF= 

http://isp.com/dog.jpg 

>Spot</A> 

Goal #2: Supporting Object Replication 

• Host replication relatively easy today 

• But per-object replication requires: 
• separate DNS name for each object 

• virtual hosting so replica servers recognize names 

• configuring DNS to refer to replica servers 

isp.com 

“/docs/foo.ps” 

mit.edu 

“~joe/foo.ps” 

http://object26.org  
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What Should References Encode? 

• Observe: if the object is allowed to change 

administrative domains, then the reference 

can’t encode an administrative domain 

• What can the reference encode? 

• Nothing about the object that might change! 

• Especially not the object’s whereabouts! 

• What kind of namespace should we use? 

Goal #3: Automate Namespace 

Management 

• Automated management implies no fighting 

over references  

• DNS-based URLs do not satisfy this . . . 

DNS is a Locus of Contention 

• Used as a branding mechanism 

• tremendous legal combat 

• “name squatting”, “typo squatting”, “reverse 

hijacking”, . . .  

• ICANN and WIPO politics 

• technical coordinator inventing naming rights 

• set-asides for misspelled trademarks 

• Humans will always fight over names . . . 

<A HREF= 

http://f012c1d/  

>Spot</A> 
Managed DHT-

based 

Infrastructure 
(10.1.2.3, 

80, /pics/

dog.gif) 

o-record 

10.1.2.3 

Web Server 

/pics/dog.gif 

orec 

SFR in a Nutshell 

• API 

• orec = get(tag); 

• put(tag, orec);  

• Anyone can put() or get() 


