
1 

15-744: Computer Networking 

L-23 Worms 

2 

Overview 

• Worm propagation 

• Worm signatures 

Threat Model 

Traditional 

• High-value targets 

• Insider threats 

Worms & Botnets 

• Automated attack of 
millions of targets 

• Value in aggregate, 
not individual systems 

• Threats:  Software 
vulnerabilities;  naïve 
users 

... and it's profitable 

• Botnets used for 
• Spam (and more spam)? 

• Credit card theft 

• DDoS extortion 

• Flourishing Exchange market 
• Spam proxying:  3-10 cents/host/week 

• 25k botnets:  $40k - $130k/year 

• Also for stolen account compromised 
machines, credit cards, identities, etc.  (be 
worried)? 

4 



2 

Why is this problem hard? 

• Monoculture:  little “genetic diversity” in hosts 

• Instantaneous transmission:  Almost entire 
network within 500ms 

• Slow immune response:  human scales 
(10x-1Mx slower!)? 

• Poor hygiene:  Out of date / misconfigured 
systems;  naïve users 

• Intelligent designer ... of pathogens 

• Near-Anonymitity 

5 

Code Red I v1 

• July 12th, 2001 

• Exploited a known vulnerability in Microsoft’s Internet 
Information Server (IIS) 
• Buffer overflow in a rarely used URL decoding routine – 

published June 18th 

• 1st – 19th of each month: attempts to spread 
• Random scanning of IP address space 

• 99 propagation threads, 100th defaced pages on server 

• Static random number generator seed 

• Every worm copy scans the same set of addresses 

 Linear growth 

Code Red I v1 

• 20th – 28th of each month: attacks 

• DDOS attack against 198.137.240.91 
(www.whitehouse.gov) 

• Memory resident – rebooting the system 
removes the worm 

• However, could quickly be reinfected 

Code Red I v2 

• July 19th, 2001 
• Largely same codebase – same author? 

• Ends website defacements 

• Fixes random number generator seeding bug 
• Scanned address space grew exponentially 
• 359,000 hosts infected in 14 hours 

• Compromised almost all vulnerable IIS servers on internet 



3 

Analysis of Code Red I v2 

• Random Constant Spread model 

• Constants 
• N = total number of vulnerable machines 

• K = initial compromise rate, per hour 

• T = Time at which incident happens 

• Variables 
• a = proportion of vulnerable machines 

compromised 

• t = time in hours 

Analysis of Code Red I v2 

N = total number of vulnerable machines 

K = initial compromise rate, per hour 

T = Time at which incident happens 

Variables 

a = proportion of vulnerable machines 

compromised 

t = time in hours 

“Logistic equation” 

Rate of growth of epidemic in finite systems when all entities 

have an equal likelihood of infecting any other entity 

Code Red I v2 – Plot 

• K = 1.8 
• T = 11.9 

Hourly probe rate data for inbound port 80 at the Chemical 

Abstracts Service during the initial outbreak of Code Red I on 

July 19th, 2001.  

Improvements: Localized scanning 

• Observation: Density of vulnerable hosts in  
IP address space is not uniform 

• Idea: Bias scanning towards local network 

• Used in CodeRed II 

• P=0.50: Choose address from local class-A 
network (/8) 

• P=0.38: Choose address from local class-B 
network (/16) 

• P=0.12: Choose random address 

• Allows worm to spread more quickly 



4 

Code Red II (August 2001) 

• Began : August 4th, 2001  

• Exploit : Microsoft IIS webservers (buffer  
 overflow) 

• Named “Code Red II” because : 

•   It contained a comment  stating so. However 
the codebase was new. 

• Infected IIS on windows 2000 successfully      
 but caused system crash on windows NT. 

• Installed a root backdoor on the infected  
 machine. 

Improvements: Multi-vector 

• Idea: Use multiple 
propagation 
methods 
simultaneously 

• Example: Nimda 
• IIS vulnerability 

• Bulk e-mails 

• Open network shares 

• Defaced web pages 

• Code Red II backdoor 

Onset of Nimda 

Time (PDT) 18 September, 2001 

H
T

T
P

 c
o

n
n

ec
ti

o
n

s/
se

co
n

d
 s

ee
n

 a
t 

L
B

N
L

 

(o
n

ly
 c

o
n

fi
rm

ed
 N

im
d

a 
at

ta
ck

s)
 

1/2 hour 

Better Worms: Hit-list Scanning 

• Worm takes a long time to “get off the 
ground” 

• Worm author collects a list of, say, 10,00 
vulnerable machines 

• Worm initially attempts to infect these hosts 

How to build Hit-List 

• Stealthy randomized scan over number of 
months 

• Distributed scanning via botnet 

• DNS searches – e.g. assemble domain list, 
search for IP address of mail server in MX 
records 

• Web crawling spider similar to search engines 

• Public surveys – e.g. Netcraft 

• Listening for announcements – e.g. vulnerable 
IIS servers during Code Red I 



5 

Better Worms: Permutation scanning 

• Problem: Many addresses are scanned multiple 
times 

• Idea: Generate random permutation of all IP 
addresses, scan in order 
• Hit-list hosts start at their own position in the 

permutation 
• When an infected host is found, restart at a random 

point 
• Can be combined with divide-and-conquer approach 

H0 H4 H1 H3 H2 H1 (Restart) 

Warhol Worm 

• Simulation shows that 
employing the two 
previous techniques, 
can attack 300,000 
hosts in less than 15 
minutes 

• Conventional = 10 
scans/sec 

• Fast Scanning = 100 
scans/sec 

• Warhol = 100 scans/sec, 
• Permutation scanning 

and 10,000 entry hit list 

Flash worms 

• A flash worm would start with a hit list that 
contains most/all vulnerable hosts 

• Realistic scenario: 
• Complete scan takes 2h with an OC-12 
• Internet warfare? 

• Problem: Size of the hit list 
• 9 million hosts  36 MB 

• Compression works: 7.5MB 
• Can be sent over a 256kbps DSL link in 3 seconds 

• Extremely fast: 
• Full infection in tens of seconds! 

Surreptitious worms 

• Idea: Hide worms in 
inconspicuous traffic 
to avoid detection 

• Leverage P2P 
systems? 
• High node degree 

• Lots of traffic to hide in 

• Proprietary protocols 

• Homogeneous software 

• Immense size (30,000,000 
Kazaa downloads!) 



6 

Example Outbreak: SQL Slammer (2003)  

• Single, small UDP packet exploit (376 b) 

• First ~1min:  classic random scanning 
• Doubles # of infected hosts every ~8.5sec 

• (In comparison:  Code Red doubled in 40min) 

• After 1min, starts to saturate access b/w 
• Interferes with itself, so it slows down 

• By this point, was sending 20M pps 

• Peak of 55 million IP scans/sec @ 3min 

• 90% of Internet scanned in < 10mins 

• Infected ~100k or more hosts 

Prevention 

• Get rid of the or permute vulnerabilities 
• (e.g., address space randomization)  
• makes it harder to compromise 

• Block traffic (firewalls) 
• only takes one vulnerable computer wandering between in & 

out or multi-homed, etc. 

• Keep vulnerable hosts off network 
• incomplete vuln. databases & 0-day worms 

• Slow down scan rate 
• Allow hosts limited # of new contacts/sec. 

• Can slow worms down, but they do still spread 

• Quarantine 
• Detect worm, block it 

23 

24 

Overview 

• Worm propagation 

• Worm signatures 

Context 

• Worm Detection 

• Scan detection 

• Honeypots 

• Host based behavioral detection 

• Payload-based ??? 



7 

Worm behavior 

• Content Invariance 

• Limited polymorphism e.g. encryption 

• key portions are invariant e.g. decryption routine 

• Content Prevalence 

• invariant portion appear frequently 

• Address Dispersion 
• # of infected distinct hosts grow overtime 

• reflecting different source and dest. addresses 

Signature Inference 

• Content prevalence:  Autograph, EarlyBird, 
etc. 

• Assumes some content invariance 

• Pretty reasonable for starters. 

• Goal:  Identify “attack” substrings 

• Maximize detection rate 

• Minimize false positive rate 

Content Sifting 

• For each string w, maintain  

• prevalence(w): Number of times it is found in 
the network traffic 

• sources(w): Number of unique sources 
corresponding to it 

• destinations(w): Number of unique destinations 
corresponding to it 

• If thresholds exceeded, then block(w) 

Issues 

• How to compute prevalence(w), sources(w) 
and destinations(w) efficiently? 

• Scalable 

• Low memory and CPU requirements 

• Real time deployment over a Gigabit link 



8 

Estimating Content Prevalence 

• Table[payload]  

• 1 GB table filled in 10 seconds 

• Table[hash[payload]] 

• 1 GB table filled in 4 minutes 

• Tracking millions of ants to track a few 
elephants 

• Collisions...false positives 

[Singh et al. 2002] 

stream memory Array of 

counters 

Hash(Pink) 

Multistage Filters 

packet memory Array of 

counters 

Hash(Green) 

Multistage Filters 

packet memory Array of 

counters 

Hash(Green) 

Multistage Filters 



9 

packet memory 

Multistage Filters 

packet memory 
Collisions  

are OK 

Multistage Filters 

packet memory 

packet1   1 

Insert 

Reached 

threshold 

Multistage Filters 

packet memory 

packet1   1 

Multistage Filters 



10 

packet memory 

packet1   1 

packet2   1 

Multistage Filters 

Stage 2 

packet memory 

packet1   1 

Stage 1 

Multistage Filters 

No false negatives! 

(guaranteed detection) 

Gray = all prior packets 

Conservative Updates 

Redundant 

Redundant 

Conservative Updates 



11 

Conservative Updates Value Sampling 

• The problem: s-b+1 substrings 

• Solution: Sample 

• But: Random sampling is not good enough 

• Trick: Sample only those substrings for 
which the fingerprint matches a certain 
pattern 

sources(w) & destinations(w) 

• Address Dispersion 

• Counting distinct elements vs. repeating 
elements 

• Simple list or hash table is too expensive 

• Key Idea: Bitmaps 

• Trick : Scaled Bitmaps 

[Estan et al. 2003] 

Bitmap counting – direct bitmap 

HASH(green)=10001001 

Set bits in the bitmap 

using hash of the flow 

ID of incoming 

packets 



12 

Bitmap counting – direct bitmap 

HASH(blue)=00100100 

Different flows have 

different hash values 

Bitmap counting – direct bitmap 

HASH(green)=10001001 

Packets from the same 

flow always hash to 

the same bit 

Bitmap counting – direct bitmap 

HASH(violet)=10010101 

Collisions OK, 

estimates compensate 

for them 

Bitmap counting – direct bitmap 

HASH(orange)=11110011 



13 

Bitmap counting – direct bitmap 

HASH(pink)=11100000 

Bitmap counting – direct bitmap 

HASH(yellow)=01100011 

As the bitmap fills up, 

estimates get 

inaccurate 

Bitmap counting – direct bitmap 

Solution: use more 

bits 

HASH(green)=10001001 

Bitmap counting – direct bitmap 

Solution: use more 

bits 

Problem: memory 

scales with the 

number of flows 

HASH(blue)=00100100 



14 

Bitmap counting – virtual bitmap 

Solution: a) store only a portion of the bitmap 

                b) multiply estimate by scaling factor 

Bitmap counting – virtual bitmap 

HASH(pink)=11100000 

Bitmap counting – virtual bitmap 

HASH(yellow)=01100011 

Problem: estimate 

inaccurate when few 

flows active 

Bitmap counting – multiple bmps 

Solution: use many bitmaps, each accurate  

                 for a different range 



15 

Bitmap counting – multiple bmps 

HASH(pink)=11100000 

Bitmap counting – multiple bmps 

HASH(yellow)=01100011 

Bitmap counting – multiple bmps 

Use this bitmap to estimate number of flows 

Bitmap counting – multiple bmps 

Use this bitmap to estimate number of flows 



16 

Bitmap counting – multires. bmp 

Problem: must update up to three bitmaps 

         per packet 

Solution: combine bitmaps into one 

O

R 

O

R 

HASH(pink)=11100000 

Bitmap counting – multires. bmp 

Bitmap counting – multires. bmp 

HASH(yellow)=01100011 

Multiresolution Bitmaps 

• Still too expensive to scale 

• Scaled bitmap 

• Recycles the hash space with too many bits set 

• Adjusts the scaling factor according 



17 

Scaled Bitmap 

• Idea: Subsample the range of hash space 

• How it works? 
• multiple bitmaps each mapped to progressively smaller and 

smaller portions of the hash space. 

• bitmap recycled if necessary. 

Result 

Roughly 5 time less memory + 

actual estimation of address 

dispersion 

Putting It Together 

header payload 

substring fingerprints 
substring fingerprints 

key src cnt dest cnt 

AD entry exist? 
update counters 

key cnt else 
update  
counter 

cnt > prevalence threshold? 
create AD entry 

Content Prevalence Table 

Address Dispersion Table 

counters > dispersion threshold? 
report key as suspicious worm 

Putting It Together 

• Sample frequency:  1/64 

• String length:  40 

• Use 4 hash functions to update prevalence 
table 

• Multistage filter reset every 60 seconds 

Parameter Tuning 

• Prevalence threshold:  3 

• Very few signatures repeat 

• Address dispersion threshold 

• 30 sources and 30 destinations 

• Reset every few hours 

• Reduces the number of reported signatures 
down to ~25,000 



18 

Parameter Tuning 

• Tradeoff between and speed and accuracy 

• Can detect Slammer in 1 second as opposed to 
5 seconds  

• With 100x more reported signatures 

False Negatives in EB 

• False Negatives 

• Very hard to prove... 

• Earlybird detected all worm outbreaks 
reported on security lists over 8 months 

• EB detected all worms detected by Snort 
(signature-based IDS)? 

• And some that weren't 

False Positives in EB 

• Common protocol headers 

• HTTP, SMTP headers 

• p2p protocol headers 

• Non-worm epidemic activity 

• Spam 

• BitTorrent (!) 

• Solution: 

• Small whitelist... 


