15-744. Computer Networking

Review

L

e Lifetime from one pair Time v. Current Draw During Query Processing
of AA batteries 22.000
» 2-3 days at full power
« 6 months at 2% duty
cycle
« Communication
dominates cost
+ < few mS to compute 5.238
 30mS to send

message 0350 .

0.00800000000000000 2.00400000000000154 4.00000000000000307
Time (s)

2
E
whd
c
o
=
>
o

Directed Diffusion

« Data centric — nodes are unimportant

 Request driven:
« Sinks place requests as interests
« Sources are eventually found and satisfy interests
 Intermediate nodes route data toward sinks

» Localized repair and reinforcement

« Multi-path delivery for multiple sources, sinks, and
qgueries

* Sinks broadcast interest to neighbors
* Interests are cached by neighbors

« Gradients are set up pointing back to where
Interests came from at low data rate

 Once a sensor receives an interest, it
routes measurements along gradients

lllustrating Directed Diffusion U}{%{

Setting up gradients

—

Sending data
\ J N\
Source Source
\ Sink Sink
— pum——"
V4
O @ Reinforcing
stable path
Source Source‘\ O

/

Sink O %M Sink
Recovering
from node failure O

\

/O

TAG Introduction

Programming sensor nets is hard!

Declarative queries are easy
 Tiny Aggregation (TAG): In-network
processing via declarative queries
In-network processing of aggregates
« Common data analysis operation

« Communication reducing
» QOperator dependent benefit

* Across nodes during same epoch
Exploit semantics improve efficiency!

Example:

* Vehicle tracking application: 2 weeks for 2
students

* Vehicle tracking query: took 2 minutes to
write, worked just as well!

\
Ty T o gy

= \ . N \
/ \ A \ / W
(e o;ﬁq-@, 9,’,:’{55;* R — o
¢ < N
\

SELECT MAX(mag)
FROM sensors

WHERE mag > thresh
EPOCH DURATION 64ms

Basic Aggregatio

* |n each epoch:

n

« Each node samples local sensors once

» (Generates partial state
 local readings
* readings from children

record (PSR)

« Outputs PSR during its comm. slot.

« At end of epoch, PSR for whole

network output at root

* (In paper: pipelining, grouping)

lllustration: Aggregation

lllustration: Aggregation

lllustration: Aggregation

lllustration: Aggregation

lllustration: Aggregation

Synopsis Diffusion (SenSys’'04) ”;i%f

 Goal: count the live sensors in the network

a4
SNH{I Count 1 bits halleng

Q\
o[1[1T0[1 10, 06 O Synopsis should be small
BN
Q_.@ld&‘r vector
0[1]0]0]0 Boolean

R OR
g Approximate COUNT algorithm: logarithmic size bit vector

Synopsis Diffusion over Rings

de is S
" o2y Hrong e B!

° Br'oadcas’rsdb\é nodes in ring i
grnegrig eived by neighbors m

« Each node transmits once =
optimal energy cost (same as

Tree)

Rin

15

Approximate COUNT with Synopsis Diffusion

Evaluation
¢ Tree A Syn. Diff.
1.00468
P~ 4 i 2
075358 1 = &
S O
Ll 0.50249 "’T’yp-ica}
= @ loss rates A
025139 | A
I AAAAAL
0.00030

0 0.225 0.450 0.675 0.900

| nes Rate

More robust than Tree

Scheme Energy

Tree 418 mJ
Syn. Diff. 421 mJ

Per node energy

Almost as energy
efficient as Tree

16

15-744. Computer Networking

L-14 Network Topology

Observation
Long-range links are expensive

Real networks are not random,
but have obvious hierarchy

Internet topologies exhibit
power law degree distributions
(Faloutsos et al., 1999)

Physical networks have hard
technological (and economic)
constraints.

Modeling Approach
Random graph (Waxman88)

Structural models (GT-ITM
Calvert/Zegura, 1996)

Degree-based models replicate
power-law degree sequences

Optimization-driven models
topologies consistent with design
tradeoffs of network engineers

Power Laws and Internet Topology N
Source: Faloutsos et 21:1./'('_19_9\99')

Most nodes have few connections N A Y

]
10000 Q

Rank R(d)

. . | Degree d
1 10
A few nodes have lots of connections

OJ=
<
S
+=
~
=
A
Q
Q
|
~
I
R

* Router-level graph & Autonomous System (AS) graph
* Led to active research in degree-based network models

Lp N
»)/,-"{
Abilenejﬁspired 7ub-0ptimal PA
P& . /
Perfomance (bps) [\
102} @ .
®
10"}
{ L
v max
| s (g) =
10°} 9 P(g) =1.08 x 1010
0 OI.2 OI.4 Oi6 Oi8 1

I(g) = Relative Likelihood 20

Achieved BW (Gbps)

Structure C

P(g) = 1.13 x 1012

.
e 3
s
%
. ’n‘
p
v‘{ ‘,_f N
=g ,
£ / =] % . .
Y [\ e
. 4
e i
.e‘ (,’ s E] " - ¥ : e .
e 4 A . i ‘/ .’. ':-;
‘Q) 3 e
p é o . N\
by o N ARV SN
d ¥ . X .
‘ CLL RN Y o
ol Merest—a

P(g) = 1.19 x 1010

102 | ’ l. 1%) E 10°
[] ° ‘ °
] ‘e L
10 | -~ E 10' 1
. —_ . -
8
L] 6]
° = =
2 oo 3
0 @ 0 °
100 b {1 - 10} . [N] K]
Se ° ® o ° >
% e ® 2o,° K]
2 g o0 ' g'e 5
g jhect? <
] °® .
10" E E 10" E [] i° ‘
10° ! 10 .
10° 10' 10° 10'
Degree Degree

etermines Performance

,/.-‘,.-,
2~ \Y

b

R

P(g) = 1.64 x 1010

° .
. * . od °
10° ° H
* eyt .
T
L]
10" ' ® e
. L]
L
N L]
10 -
10° 10'

Degree

21

Routing: Chord

» Associate to each node and item a unique
id In an uni-dimensional space

* Properties
* Routing table size O(log(N)) , where N is the

total number of nodes

« Guarantees that a file is found in O(log(N))
steps

Routing: Chord Basic Lookup
N120
— N10 “Where is key 80?”
N105 ‘\
“N90 has K80” N32
K80 N9O /
N60

23

Routlng Finger table - Faster Lookups}{%}{

24

Aside: Hashing
« Advantages
* Let nodes be numbered 1..m
Client uses a good hash function to map a URL to 1..m

Say hash (url) = x, so, client fetches content from node
X

No duplication — not being fault tolerant.
One hop access

Any problems?
« What happens if a node goes down?
« What happens if a node comes back up?
« What if different nodes have different views?

Consistent Hash

* “view” = subset of all hash buckets that are
visible

* Desired features
« Balanced — in any one view, load is equal

across buckets

« Smoothness — little impact on hash bucket
contents when buckets are added/removed

« Spread — small set of hash buckets that may
nold an object regardless of views

_oad — across all views # of objects assigned to
nash bucket is small

Consistent Hash — Example

« Construction

» Assign each of C hash buckets to
random points on mod 2" circle,
where, hash key size = n.

- Map object to random position on
circle

- Hash of object = closest
clockwise bucket

Smoothness = addition of bucket does not cause much
movement between existing buckets

Spread & Load - small set of buckets that lie near object

Balance - no bucket is responsible for large number of
objects

» Neighbor selection: how a node picks its routing entries
* Route selection: how a node picks the next hop

* Proposed metric: flexibility
« amount of freedom to choose neighbors and next-hop paths
« FNS: flexibility in neighbor selection
* FRS: flexibility in route selection

* intuition: captures ability to “tune” DHT performance

 single predictor metric dependent only on routing issues

7

Does flexibility affect static resilience? WAy

<N d b
— — — — —

100 —————————
) Tree XOR /\/ /<
< N N
L 60 Hypercube
o Hybrid
3 |
'ms 40 :
s
= /é\Ring

20 —

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

Tree << XOR = Hybrid < Hypercube < Ring

Flexibility in Route Selection matters for Static Resilience

48

?
o La
/

WhICh |s more effectlve FNS or F FRS? v/%37

100

80

60

CDF

40

20

\n’

FNS+FRSRing ~—
ENS Ring - T
//K ' fg FRS Ring ’<
/ / FFFFF -~ Plain Ring
/ 7 <
/ e
|/
400 800 1200 1600 2000

Latencv (msec)

Plain << FRS << FNS = FNS+FRS
Neighbor Selection is much better than Route

Selection

49

Does Geometry affect performance of FNS -

or FRS?

CDF

A
q)\J\p
{E.{\n

FNS Ring =
l\;}ﬁ . . ;,;?:Tﬂ; VVVVV
/ ~ e N
7 FNS XOR FRS Ring
] 7
| j ‘
;f // FRS Hypercube
/ﬁ y

400

800 1200

Latencv (msec)

1600 2000

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

50

Lookup Methods

Recursive query:

- Server goes out and
searches for more info
(recursive)

* Only returns final answer
or “not found”

lterative query:

» Server responds with as
much as it knows
(iterative)

* “l don’t know this name,
but ask this server”

Workload impact on choice?

« Local server typically does
recursive

 Root/distant server does
iterative

3

Q

4
e

root name server

2

4

P
<

t

local name server
dns.eurecom.fr

[
2

requesting host
surf.eurecom.fr

/ ﬂ
intermediate name server
dns.umass.edu

5116

server

s
pN

P
A
%
B

g

iterated query

authoritative name

dns.cs.umass.edu

g
h®

@gaia.cs.umass.edu

18

7

ST
"

Typlcal Resolution %
root & edu
edy y
www.cs.cmu.edu \N\N\N_Gg,_om\) " DNS server
WS as) e
 NSter e ns1.cmu.edu
Client Local ©8-Cmu.edy DNS server
DNS server
ns1.cs.cmu.edu
‘90'01/, DNS
server

Workload and Caohlng
. What workload do you expect for different servers/names?
* Why might this be a problem? How can we solve this problem?

 DNS responses are cached
* Quick response for repeated translations

» Other queries may reuse some parts of lookup
* NS records for domains

« DNS negative queries are cached
* Don’t have to repeat past mistakes
« E.g. misspellings, search strings in resolv.conf

« Cached data periodically times out
« Lifetime (TTL) of data controlled by owner of data
 TTL passed with every record

root & edu

DNS server
ftp.cs.cmu.edu

cmu.edu

Client Local DNS server
DNS server
cs.cmu.edu
DNS

server

21

DNS Experience

« 23% of lookups with no answer

« Retransmit aggressively - most packets in trace for
unanswered lookups!

« Correct answers tend to come back quickly/with few
retries

* 10 - 42% negative answers =2 most = no name
exists
 Inverse lookups and bogus NS records
« Worst 10% lookup latency got much worse
« Median 85->97, 90t percentile 447->1176
 Increasing share of low TTL records - what is
happening to caching?

 Most Internet traffic is Web

« What does a typical page look like? = average of 4-5
imbedded objects - needs 4-5 transfers - accounts
for 80% hit rate!

70% hit rate for NS records - i.e. don’t go to root/

gTLD servers
« NS TTLs are much longer than ATTLs
* NS record caching is much more important to scalability

Name distribution = Zipf-like = 1/x2

A records 2 TTLs = 10 minutes similarto TTLs =
Infinite

10 client hit rate = 1000+ client hit rate

How Akamail Works

* Root server gives NS record for akamai.net
« Akamai.net name server returns NS record for
g.akamaitech.net

 Name server chosen to be in region of client’'s name
server

« TTLis large
 (G.akamaitech.net nameserver choses server in
region
« Should try to chose server that has file in cache - How
to choose?

« Uses aXYZ name and consistent hash
e TTL is small

13: Rendezvous Communication

* Packets addressed to identifiers (‘names”)

* Trigger=(ldentifier, IP address): inserted by
receiver

send(R, data)
. send(ID, N |

Sender Receiver (R)

Senders decoupled from receivers

. VA
Mopility e

* The change of the receiver’'s address
* from R to R’ is transparent to the sender

@

llllllll
lllllllll

sender (S) sender (S)

recaiver (R)

(2) Mobihty

11

<N d b
Delegate
IP:
— End-host
1P DOA tr%gort body >/ EID: ¢,
s J | € € . L IP: 7,

DOA Packet —
- End-host replies to source by resolving e,

* Authenticity, performance: discussed in the
paper

32

* |Incrementally deployable. Requires:
« Changes to hosts and middleboxes
* No changes to IP routers (design requirement)
* Global resolution infrastructure for flat IDs

* Recall core properties:
« Topology-independent, globally unique identifiers
* Let end-hosts invoke and revoke middleboxes

* Recall goals: reduce harmful effects, permit
new functions

15-744. Computer Networking

L-20 Data-Oriented Networking

L

* Application defined names are not portable
» Use content-naming for globally unique names
* Objects represented by an OID

Foo.tx TN
X ~—|- OID

C i
* Objects are furthe}ysrf)stﬁ -divided into “chunks”

- R
<

« Secure and scalable!

Descl

>
S5
S5

Desc3

 Names organized around principals.

« Names are of the form P : L.

* P is cryptographic hash of principal’s public key,
and

* L is a unique label chosen by the principal.
» Granularity of naming left up to principals.
 Names are “flat”.

Self-certifying Names

* A piece of data comes with a public key and
a signature.

» Client can verity the data did come from the
principal by

« Checking the public key hashes into P, and
 Validating that the signature corresponds to the
public key.

* Challenge is to resolve the flat names into a
location.

* Endpoint IDs are processed as names
* refer to one or more DTN nodes
» expressed as Internet URI, matched as strings

« URIs

* Internet standard naming scheme [RFC3986]
 Format: <scheme> : <SSP>

 SSP can be arbitrary, based on (various)
schemes

* More flexible than DOT/DONA design but
less secure/scalable

15-744. Computer Networking

L-20 Multicast

L

Implosion

Packet 1 is lost All 4 receivers request a resend

—_—
Resend request

35

ldeal Recovery Model ';:%“{

Packet 1 reaches R1 but is lost Only one receiver sends NACK to
before reaching other Receivers the nearest S or R with packet

—_—
Resend request
—_—

Resent packet

Repair sent
only to
those that
need packet

38

SRM Request Suppression

Packet 1 is lost; R1 requests
resend to Source and Receivers

—_—
Resend request

Delay varies
by distance

o

Packet 1 is resent; R2 and R3 no
longer have to request a resend

—_—
Resent packet

40

Deterministic Suppression

e D D D e
d data
d
|
d

Delay = Cyxdgg

41

SRM Star Topology

Packet 1 is lost; All Receivers
request resends

—
Resend request

Delay is same length

Packet 1 is resent to all Receivers

—_—
Resent packet

42

- SRM: Stochastic Suppressmn }{%{

> Time
= Sender
Delay = UJ[0,D.,] xd
y [’ 2] SR = Repairer
= Requestor

43

SRM (Summary)

 NACK/Retransmission suppression
* Delay before sending
* Delay based on RTT estimation
« Deterministic + Stochastic components

* Periodic session messages
 Full reliability
« Estimation of distance matrix among members

Routing Techniques

* Flood and prune
« Begin by flooding traffic to entire network
* Prune branches with no receivers
 Examples: DVMRP, PIM-DM
 Unwanted state where there are no receivers

 Link-state multicast protocols

* Routers advertise groups for which they have receivers
to entire network

« Compute trees on demand
« Example: MOSPF
 Unwanted state where there are no senders

15-744. Computer Networking

L-22 Security and DoS

L

TVA (Capabillity)

Capability = :
timestamp || Hash (N, T, PreCap) @
Capl,Cap2

* N bytes, T seconds

e Stateless receiver
— Does not store N, T

31

7

SN
Ny

* |t is quite possible for a compromised insider to
allow packet floods from outside

A fair-queuing policy is implemented and the
Ban_dwidth Is decreased as the network becomes
usier

To limit the number of queues, a bounded policy is
uhsed l\vl\;hich only queues those flows that send faster
than N/T

Other senders are limited by FIFO service

* Internet hosts are vulnerable
« Many attacks consist of very few packets
* Fraggle, Teardrop, ping-of-death, etc.

* Internet Protocol permits anonymity

 Attackers can “spoof” source address
* |P forwarding maintains no audit trails

* Need a separate traceback facility
* For a given packet, find the path to source

Approaches to Traceback

* Path data can be noted in several places
* |In the packet itself [Savage et al.],
* At the destination [I-Trace], or
* |n the network infrastructure

* Logging: a nailve in-network approach
« Record each packet forwarding event

« Can trace a single packet to a source router,
ingress point, or subverted router(s)

* Record only invariant packet content
« Mask dynamic fields (TTL, checksum, etc.)

« Store information required to invert packet
transformations at performing router

« Compute packet digests instead

* Use hash function to compute small digest
« Store probabilistically in Bloom filters

* Impossible to retrieve stored packets

Bloom Filters

* Fixed structure size
« Uses 2n bit array
* Initialized to zeros
* |Insertion is easy
» Use n-bit digest as

Indices into bit array

» Mitigate collisions by
using multiple digests

* Variable capacity
» Easy to adjust
« Page when full

15-744. Computer Networking

L-23 Worms

L

Threat Model

Traditional Worms & Botnets

* High-value targets « Automated attack of

« Insider threats millions of targets

* Value in aggregate,
not individual systems

 Threats: Software
vulnerabilities; naive
users

Analysis of Code Red | v2

 Random Constant Spread model

« Constants
* N = total number of vulnerable machines
* K = Initial compromise rate, per hour
T = Time at which incident happens

 Variables

* a = proportion of vulnerable machines
compromised

 {t =time In hours

Analysis of Code Red | v2 =y

Nda = (Na)K (1 — a)dt.

N = total number of vulnerable machines
da K = initial compromise rate, per hour
d_ — Ka (1 — a) T = Time at which incident happens

t

Variables
a = proportion of vulnerable machines

- compromised
CL — 1 _I_ é)K(t_T)) t:tlme inhourS

oK (t=T)

“Logistic equation”
Rate of growth of epidemic in finite systems when all entities
have an equal likelithood of infecting any other entity

Code Red | v2 — Plot

600,000

500,000

400,000

Number seen in an hour

100,000

0
0 2 4 6 8 10 12 14 16
Hour in the day

i of scans =——d——7# of unique |IPs —8—Predicted # of scans

Hourly probe rate data for inbound port 80 at the Chemical

7

SN
Ny

300,000 . K=18
200,000 e T=11.9

Abstracts Service during the initial outbreak of Code Red I on

July 19th, 2001.

* Worm takes a long time to “get off the
ground”

* Worm author collects a list of, say, 10,00
vulnerable machines

* Worm initially attempts to infect these hosts

7

A%

A

D/\E':’n
D\
o

Better Worms: Permutation scanning '~

* Problem: Many addresses are scanned multiple
times

* ldea: Generate random permutation of all IP
addresses, scan in order

« Hit-list hosts start at their own position in the
permutation

 When an infected host is found, restart at a random
point

« Can be combined with divide-and-conquer approach

Signature Inference

« Content prevalence: Autograph, EarlyBird,
etc.

« Assumes some content invariance
* Pretty reasonable for starters.

« Goal: ldentify "attack™ substrings
 Maximize detection rate
* Minimize false positive rate

Estimating Content Prevalence

» Table[payload]
1 GB table filled in 10 seconds

» Table[hash[payload]]
1 GB table filled in 4 minutes

 Tracking millions of ants to track a few
elephants

* Collisions...false positives

Comparison

Earlybird Autograph

Infect the system with Network Data (real traces)
Rabin fingerprint
White-list/blacklist
No-prefiltering Flow-reassembly

Single sensor algorithmics + Distributed Deployment +
centralized aggregators active cooperation between
multiple sensors

On-line Off-line

Overlapping, fixed-length Non-overlapping, variable-
chunks length chunks

