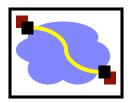
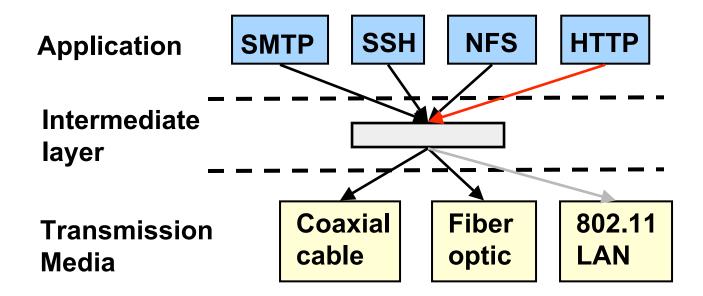


15-744 Computer Networks

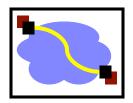

Background Material 1:

Getting stuff from here to there

Or


How I learned to love OSI layers 1-3

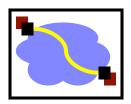
Power of Layering



Solution: Intermediate layer that provides a single abstraction for various network technologies

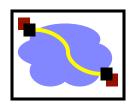
- O(1) work to add app/media
- variation on "add another level of indirection"

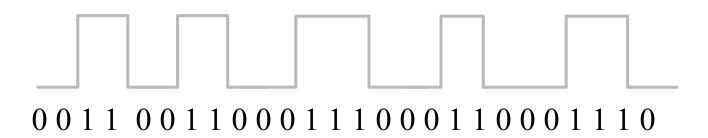
Outline

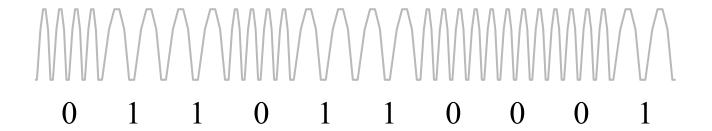

Switching and Multiplexing

Link-Layer

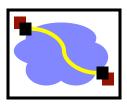
Routing-Layer

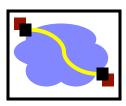

Physical-Layer Encoding


Packet vs. Circuit Switching

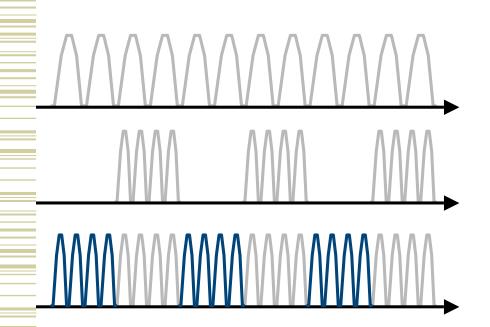


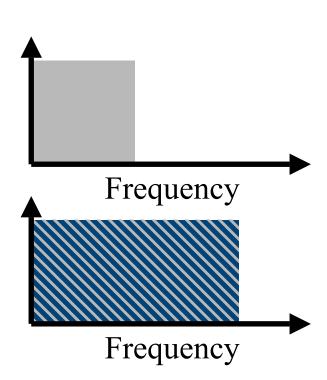
- Packet-switching: Benefits
 - Ability to exploit statistical multiplexing
 - More efficient bandwidth usage
- Packet switching: Concerns
 - Needs to buffer and deal with congestion:
 - More complex switches
 - Harder to provide good network services (e.g., delay and bandwidth guarantees)


Amplitude and Frequency Modulation

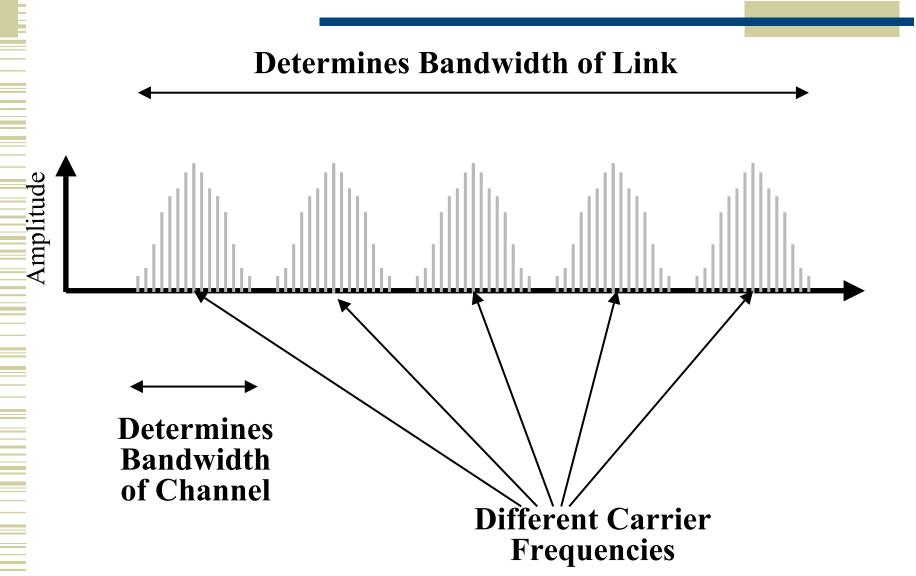


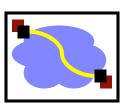
Capacity of a Noisy Channel



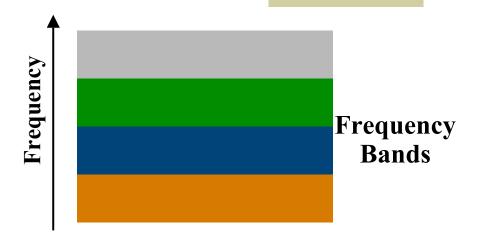

- Can't add infinite symbols you have to be able to tell them apart.
 This is where noise comes in.
- Shannon's theorem:
 - $C = B \times log(1 + S/N)$
 - C: maximum capacity (bps)
 - B: channel bandwidth (Hz)
 - S/N: signal to noise ratio of the channel
 - Often expressed in decibels (db). 10 log(S/N).
- Example:
 - Local loop bandwidth: 3200 Hz
 - Typical S/N: 1000 (30db)
 - What is the upper limit on capacity?
 - Modems: Teleco internally converts to 56kbit/s digital signal, which sets a limit on B and the S/N.

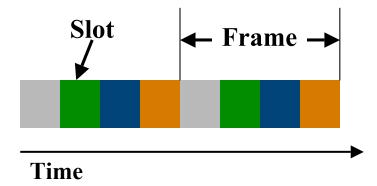
Time Division Multiplexing


- Different users use the wire at different points in time.
- Aggregate bandwidth also requires more spectrum.



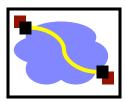
Frequency Division Multiplexing: Multiple Channels

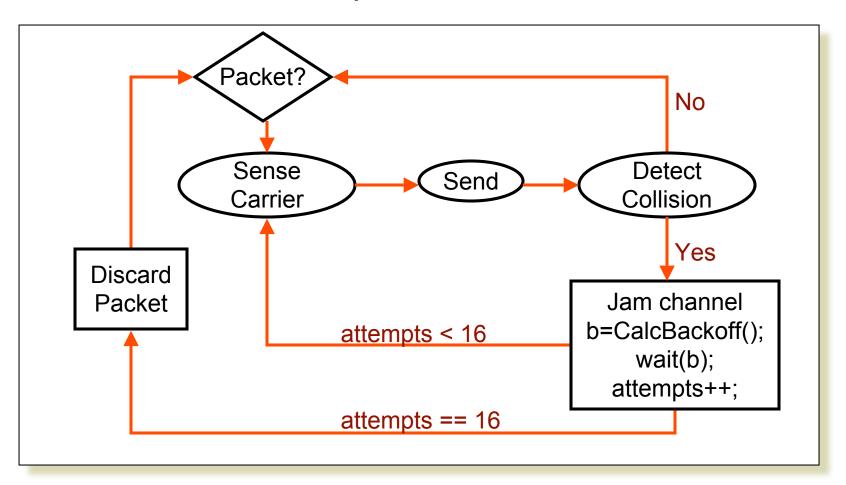


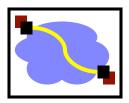


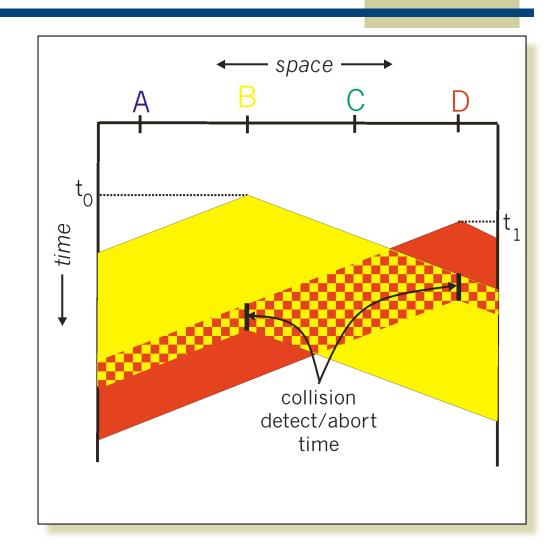
Frequency versus Time-division Multiplexing

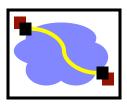
- With frequency-division multiplexing different users use different parts of the frequency spectrum.
 - I.e. each user can send all the time at reduced rate
 - Example: roommates
- With time-division multiplexing different users send at different times.
 - I.e. each user can send at full speed some of the time
 - Example: a time-share condo
- The two solutions can be combined.
 - Example: a time-share roommate
 - Example: GSM

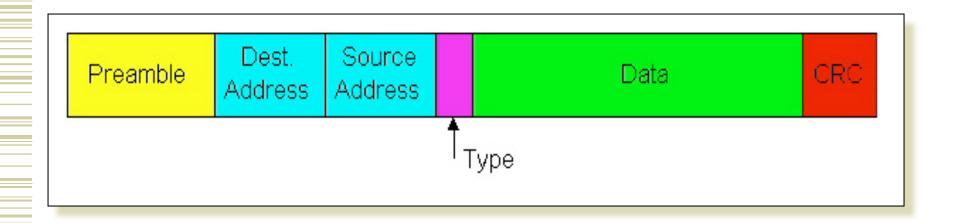

Outline

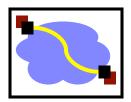

- Switching and Multiplexing
- Link-Layer
 - Ethernet and CSMA/CD
 - Bridges/Switches
- Routing-Layer
- Physical-Layer


Ethernet MAC (CSMA/CD)

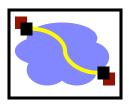

Carrier Sense Multiple Access/Collision Detection


Minimum Packet Size

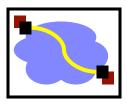

- What if two people sent really small packets
 - How do you find collision?
- Consider:
 - Worst case RTT
 - How fast bits can be sent


Ethernet Frame Structure

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

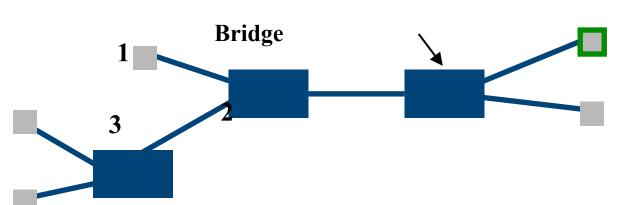

Ethernet Frame Structure (cont.)

- Addresses: 6 bytes
 - Each adapter is given a globally unique address at manufacturing time
 - Address space is allocated to manufacturers
 - 24 bits identify manufacturer
 - E.g., 0:0:15:* → 3com adapter
 - Frame is received by all adapters on a LAN and dropped if address does not match
 - Special addresses


- Broadcast FF:FF:FF:FF:FF is "everybody"
- Range of addresses allocated to multicast
 - Adapter maintains list of multicast groups node is interested in

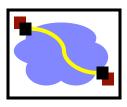
Summary

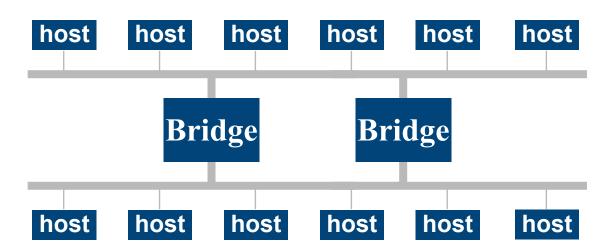
- CSMA/CD → carrier sense multiple access with collision detection
 - Why do we need exponential backoff?
 - Why does collision happen?
 - Why do we need a minimum packet size?
 - How does this scale with speed? (Related to HW)
- Ethernet
 - What is the purpose of different header fields?
 - What do Ethernet addresses look like?
- What are some alternatives to Ethernet design?


Transparent Bridges / Switches

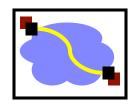
- Design goals:
 - Self-configuring without hardware or software changes
 - Bridge do not impact the operation of the individual LANs
- Three parts to making bridges transparent:
 - → Forwarding frames
 - Learning addresses/host locations
 - ✓ Spanning tree algorithm

Frame Forwarding

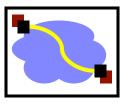



MAC		
Address	Port	Age
A21032C9A591	1	36
99A323C90842	2	01
8711C98900AA	2	15
301B2369011C	2	16
695519001190	3	11
9-20-07		

- A machine with <u>MAC Address</u> lies in the direction of number <u>port</u> of the bridge
- For every packet, the bridge "looks up" the entry for the packets destination MAC address and forwards the packet on that port.
 - Other packets are broadcast why?
- Timer is used to flush old entries

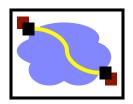

Spanning Tree Bridges

- More complex topologies can provide redundancy.
 - But can also create loops.
- What is the problem with loops?
- Solution: spanning tree

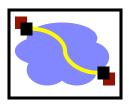


Outline

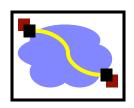
- Switching and Multiplexing
- Link-Layer
- Routing-Layer
 - IP
 - IP Routing
 - MPLS
- Physical-Layer


IP Addresses

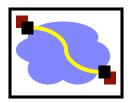
- Fixed length: 32 bits
- Initial classful structure (1981) (not relevant now!!!)
- Total IP address size: 4 billion
 - Class A: 128 networks, 16M hosts
 - Class B: 16K networks, 64K hosts
 - Class C: 2M networks, 256 hosts


High Order Bits	<u>Format</u>	<u>Class</u>
0	7 bits of net, 24 bits of host	Α
10	14 bits of net, 16 bits of host	В
110	21 bits of net, 8 bits of host	С

Subnet Addressing RFC917 (1984)


- Class A & B networks too big
 - Very few LANs have close to 64K hosts
 - For electrical/LAN limitations, performance or administrative reasons
- Need simple way to get multiple "networks"
 - Use bridging, multiple IP networks or split up single network address ranges (subnet)
- CMU case study in RFC
 - Chose not to adopt concern that it would not be widely supported ©

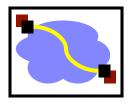
Aside: Interaction with Link Layer


- How does one find the Ethernet address of a IP host?
- ARP (Address Resolution Protocol)
 - Broadcast search for IP address
 - E.g., "who-has 128.2.184.45 tell 128.2.206.138" sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g, "reply 128.2.184.45 is-at 0:d0:bc:f2:18:58" sent to 0:c0:4f:d:ed:c6

Classless Inter-Domain Routing (CIDR) – RFC1338

- Allows arbitrary split between network & host part of address
 - Do not use classes to determine network ID
 - Use common part of address as network number
 - E.g., addresses 192.4.16 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the network number → 192.4.16/20
- Enables more efficient usage of address space (and router tables) → How?
 - Use single entry for range in forwarding tables
 - Combined forwarding entries when possible

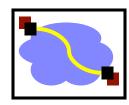
IP Addresses: How to Get One?



Network (network portion):

Get allocated portion of ISP's address space:

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	00010000	00000000	200.23.16.0/23
Organization 1	11001000	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	11001000	00010111	00010100	00000000	200.23.20.0/23
•••		••••		••••	••••
Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

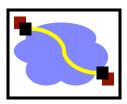

IP Addresses: How to Get One?

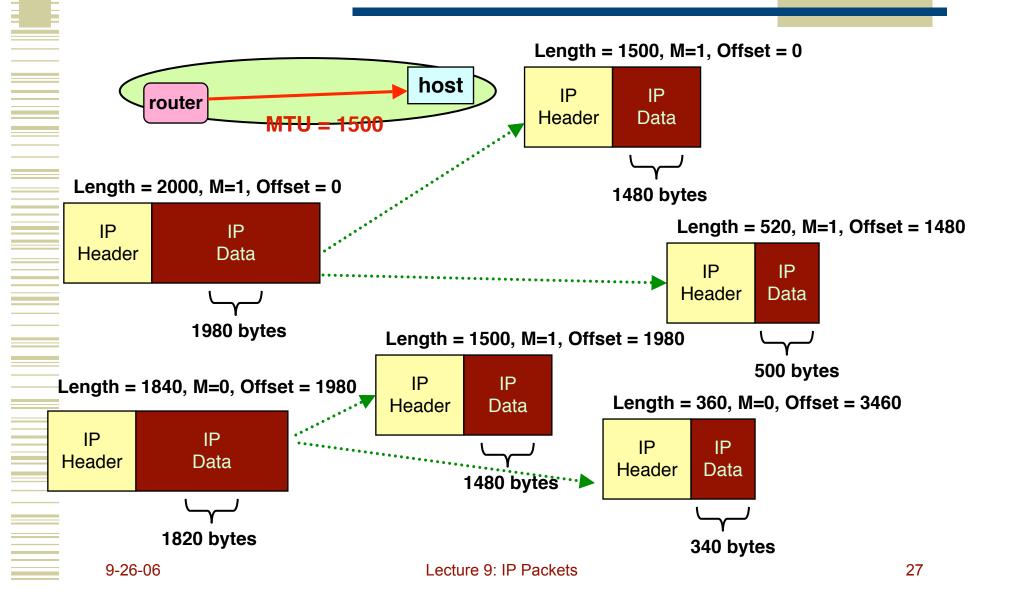
- How does an ISP get block of addresses?
 - From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)
- How about a single host?

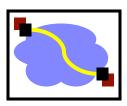
- Hard-coded by system admin in a file
- DHCP: Dynamic Host Configuration Protocol: dynamically get address: "plug-and-play"
 - Host broadcasts "DHCP discover" msg
 - DHCP server responds with "DHCP offer" msg
 - Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg


IP Service Model

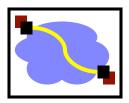
- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram


0	4	8	12	16	19	24	28	31

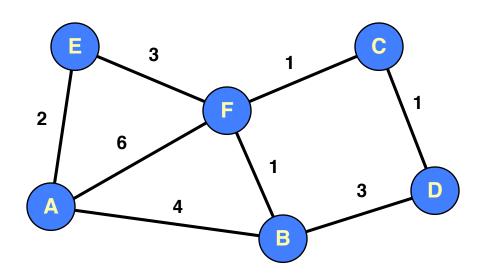

IPv4 Packet Format


Header

IP Fragmentation Example



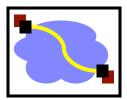
Important Concepts

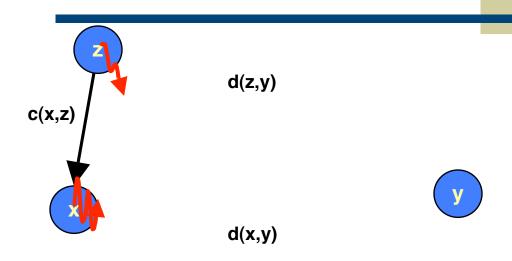


- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

Distance-Vector Routing

Initial Table for A			
Dest	Cost	Next Hop	
Α	0	Α	
В	4	В	
С	8	ı	
D	8	_	
Е	2	Е	
F	6	F	

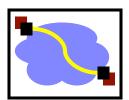

Idea


- At any time, have cost/next hop of best known path to destination
- Use cost ∞ when no path known

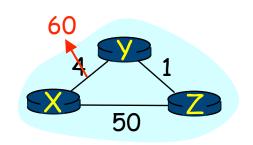
Initially

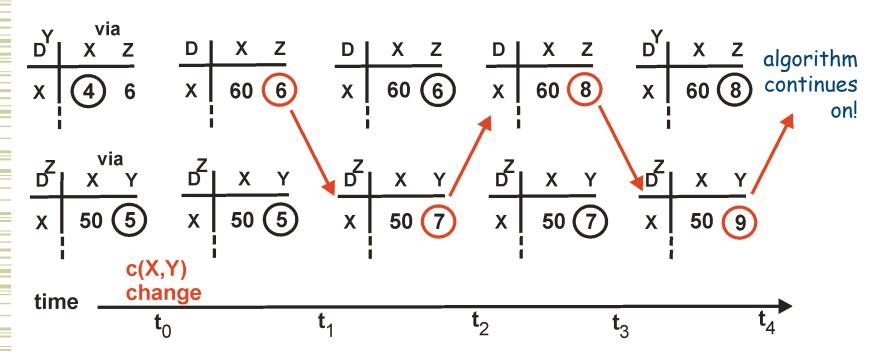
Only have entries for directly connected nodes

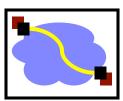
Distance-Vector Update



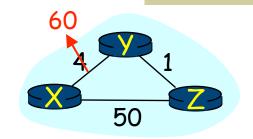
Update(x,y,z)

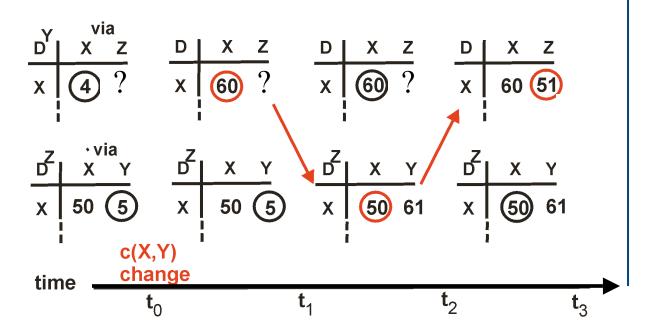

```
d ← c(x,z) + d(z,y)  # Cost of path from x to y with first hop z
if d < d(x,y)
  # Found better path
  return d,z  # Updated cost / next hop
else
  return d(x,y), nexthop(x,y)  # Existing cost / next hop</pre>
```


Distance Vector: Link Cost Changes


Link cost changes:

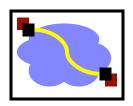
- Good news travels fast
- Bad news travels slow -"count to infinity" problem!



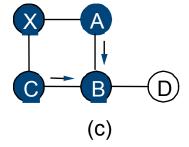

Distance Vector: Split Horizon

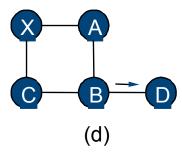
If Z routes through Y to get to X:

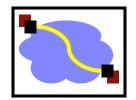
Z does not advertise its route to X back to Y


algorithm terminates

Link State Protocol Concept


- Every node gets complete copy of graph
 - Every node "floods" network with data about its outgoing links
- Every node computes routes to every other node
 - Using single-source, shortest-path algorithm
- Process performed whenever needed
 - When connections die / reappear


Sending Link States by Flooding

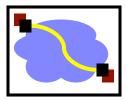

- X Wants to Send Information
 - Sends on all outgoing links
- (a)
- (b)

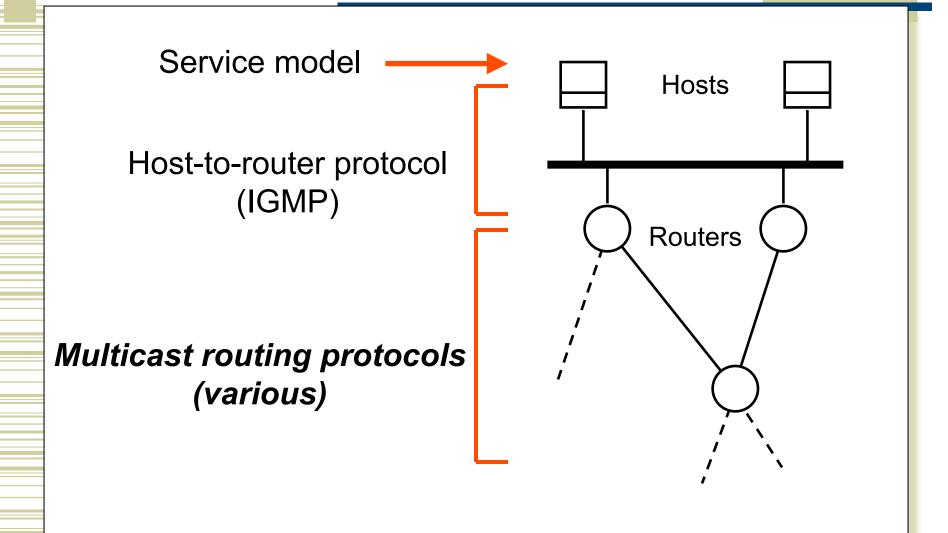
- When Node B Receives Information from A
 - Send on all links other than A

Comparison of LS and DV Algorithms

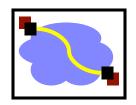
Message complexity

- <u>LS:</u> with n nodes, E links, O(nE) messages
- <u>DV:</u> exchange between neighbors only O(E)

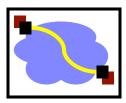

Speed of Convergence

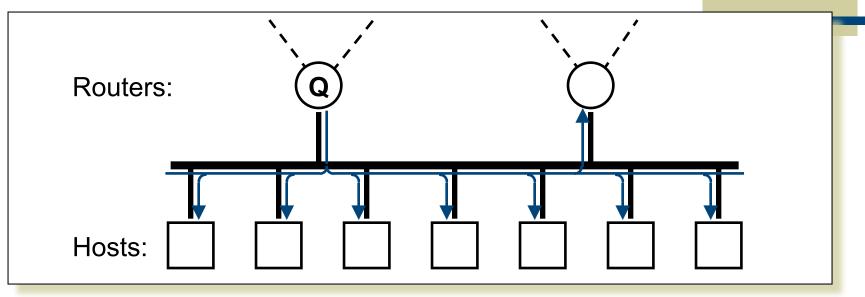

- <u>LS:</u> Complex computation
 - But...can forward before computation
 - may have oscillations
- <u>DV</u>: convergence time varies
 - may be routing loops
 - count-to-infinity problem
 - (faster with triggered updates)

Space requirements:

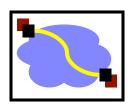

- LS maintains entire topology
- DV maintains only neighbor state

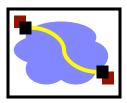
IP Multicast Control Plane




IP Multicast Service Model (rfc1112)

- Each group identified by a single IP address
- Groups may be of any size
- Members of groups may be located anywhere in the Internet
- Members of groups can join and leave at will
- Senders need not be members
- Group membership not known explicitly
- Analogy:
 - Each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.

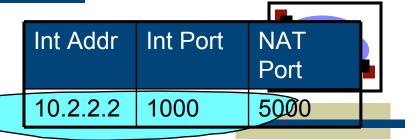

How IGMP Works


- On each link, one router is elected the "querier"
- Querier periodically sends a Membership Query message to the all-systems group (224.0.0.1), with TTL = 1
- On receipt, hosts start random timers (between 0 and 10 seconds) for each multicast group to which they belong

Multicast Routing Protocols (Part 2 of Control Plane)

- Basic objective build distribution tree for multicast packets
- Flood and prune
 - Begin by flooding traffic to entire network
 - Prune branches with no receivers
 - Examples: DVMRP, PIM-DM
 - Unwanted state where there are no receivers
- Link-state multicast protocols
 - Routers advertise groups for which they have receivers to entire network
 - Compute trees on demand
 - Example: MOSPF
 - Unwanted state where there are no senders

BGP - Border Gateway Protocol



Covered next week

NAT: Client Request

W: Workstation

S: Server Machine



10.5.5.5

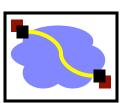
243.4.4.4

NAT

Corporation X

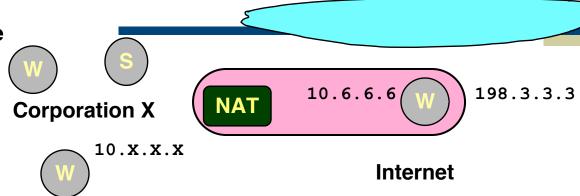
Internet 198.2.4.5:80

source: 10.2.2.2 dest: 198.2.4.5


src port: 1000 dest port: 80

source: 243.4.4.4 dest: 198.2.4.5

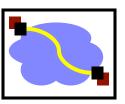
src port: 5000 dest port: 80

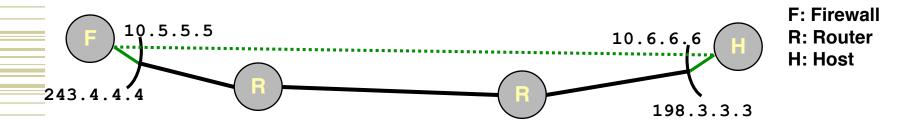

- Firewall acts as proxy for client
 - Intercepts message from client and marks itself as sender

Extending Private Network

W: Workstation

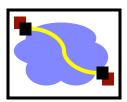
S: Server Machine


Supporting Road Warrior


- Employee working remotely with assigned IP address 198.3.3.3
- Wants to appear to rest of corporation as if working internally
 - From address 10.6.6.6
 - Gives access to internal services (e.g., ability to send mail)

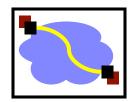
Virtual Private Network (VPN)

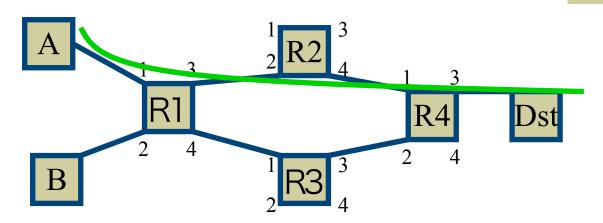
Overlays private network on top of regular Internet


Supporting VPN by Tunneling

- Concept
 - Appears as if two hosts connected directly
- Usage in VPN
 - Create tunnel between road warrior & firewall
 - Remote host appears to have direct connection to internal network

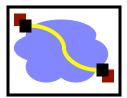
Implementing Tunneling


- Host creates packet for internal node 10.6.1.1.1
- Entering Tunnel
 - Add extra IP header directed to firewall (243.4.4.4)
 - Original header becomes part of payload
 - Possible to encrypt it
- Exiting Tunnel
 - Firewall receives packet
 - Strips off header
 - Sends through internal network to destination

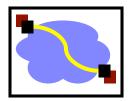

source: 198.3.3.3 dest: 243.4.4.4

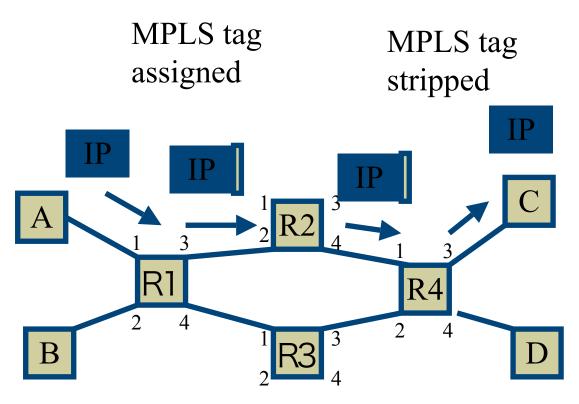
dest: 10.1.1.1 source: 10.6.6.6

Payload

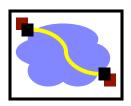


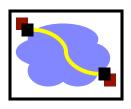
• Global VC ID allocation -- ICK! Solution: Per-link uniqueness. Change VCI each hop.


Input Port		Input VCI	Output Port	Output VCI
R1:	1	5	3	9
R2:	2	9	4	2
R4:	1	2	3	5

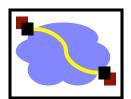


	Source Routing	Global Addresses	Virtual Circuits
Header Size	Worst	OK – Large address	Best
Router Table Size	None	Number of hosts (prefixes)	Number of circuits
Forward Overhead	Best	Prefix matching (Worst)	Pretty Good
Setup Overhead	None	None	Connection Setup
Error Recovery	Tell all hosts	Tell all routers	Tell all routers and Tear down circuit and re-route


MPLS core, IP interface


MPLS forwarding in core

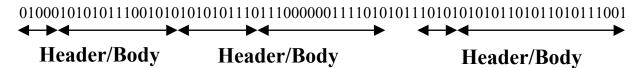
Take Home Points


- Costs/benefits/goals of virtual circuits
- Cell switching (ATM)
 - Fixed-size pkts: Fast hardware
 - Packet size picked for low voice jitter. Understand trade-offs.
 - Beware packet shredder effect (drop entire pkt)
- - Makes label assignment link-local. Understand mechanism.
- Fixed-size pkts: Fast hardware
 Packet size picked for low voice jitte
 Beware packet shredder effect (dro
 Tag/label swapping
 Basis for most VCs.
 Makes label assignment link-local.
 MPLS IP meets virtual circuits
 MPLS tunnels used for VPNs, traffir routing table sizes MPLS tunnels used for VPNs, traffic engineering, reduced core

Outline

- Switching and Multiplexing
- Link-Layer
- Routing-Layer
- Physical-Layer
 - Encodings

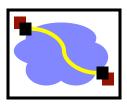
From Signals to Packets

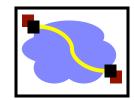


"Digital" Signal

Bit Stream

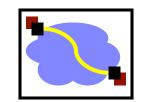
Packets


0 0 1 0 1 1 1 0 0 0 1

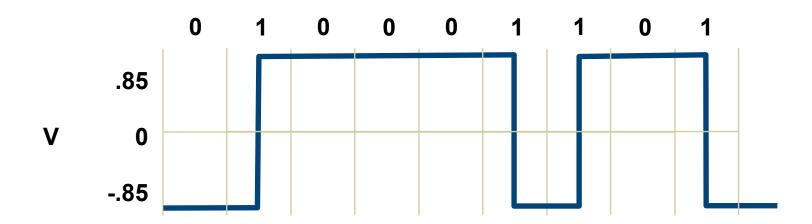

Packet Transmission

Encoding

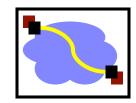
- We use two discrete signals, high and low, to encode 0 and 1
- The transmission is synchronous, i.e., there is a clock used to sample the signal
 - In general, the duration of one bit is equal to one or two clock ticks

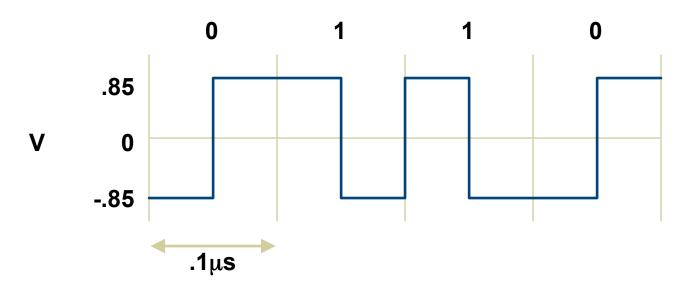


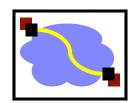
Non-Return to Zero (NRZ)



1 -> high signal; 0 -> low signal


- Long sequences of 1's or 0's can cause problems:
 - Sensitive to clock skew, i.e. hard to recover clock
 - Difficult to interpret 0's and 1's


Non-Return to Zero Inverted (NRZI)


- 1 -> make transition; 0 -> signal stays the same
- Solves the problem for long sequences of 1's, but not for 0's.

Ethernet Manchester Encoding

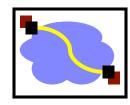
- Positive transition for 0, negative for 1
- Transition every cycle communicates clock (but need 2 transition times per bit)
- DC balance has good electrical properties

- uses less frequency space than Mar.

 Uses NRI to encode the 5 code bits

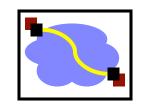
 Each valid symbol has at least two transitions.

 16 data symbols, 8 cont

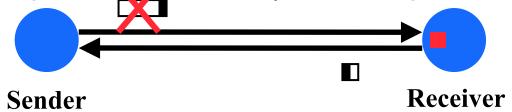

 Data symbols: 4 d

 Control sym'

 Examr' Data coded as *symbols* of 5 line bits => 4 data
 - Uses less frequency space than Manchester encoding


 - Each valid symbol has at least two 1s: get dense

Framing



- A link layer function, defining which bits have which function.
- Minimal functionality: mark the beginning and end of packets (or frames).
- Some techniques:
 - out of band delimiters (e.g. FDDI 4B/5B control symbols)
 - frame delimiter characters with character stuffing
 - frame delimiter codes with bit stuffing
 - synchronous transmission (e.g. SONET)

Dealing with Errors Stop and Wait Case

- Packets can get lost, corrupted, or duplicated.
 - Error detection or correction turns corrupted packet in lost or correct packet
- Duplicate packet: use sequence numbers.
- Lost packet: time outs and acknowledgements.
 - Positive versus negative acknowledgements
 - Sender side versus receiver side timeouts
- Window based flow control: more aggressive use of sequence numbers (see transport lectures).

