
15-744 Computer Networking

Review 2 – Transport Protocols
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Outline

• Transport introduction

• Error recovery & flow control
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Transport Protocols

• Lowest level end-to-
end protocol.
• Header generated by

sender is interpreted
only by the destination

• Routers view transport
header as part of the
payload

• Not always true…
• Firewalls
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Functionality Split

• Network provides best-effort delivery
• (Hmm, does it anymore?  More on this in a few weeks)

• End-systems implement many functions
• Reliability
• In-order delivery
• Demultiplexing
• Message boundaries
• Connection abstraction
• Congestion control
• …
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Transport Protocols

• UDP provides just integrity and demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Byte-stream
• Full duplex
• Flow and congestion controlled

• DCCP, RTP, SCTP -- not widely used.
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UDP: User Datagram Protocol [RFC 768]

• “No frills,” “bare bones”
Internet transport
protocol

• “Best effort” service,
UDP segments may be:
• Lost
• Delivered out of order to

app

• Connectionless:
• No handshaking between

UDP sender, receiver
• Each UDP segment

handled independently of
others

Why is there a UDP?
• No connection establishment

(which can add delay)
• Simple: no connection state

at sender, receiver
• Small header
• No congestion control: UDP

can blast away as fast as
desired
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UDP, cont.

• Often used for
streaming
multimedia apps
• Loss tolerant
• Rate sensitive

• Other UDP uses
(why?):
• DNS

• Reliable transfer
over UDP
• Must be at

application layer
• Application-specific

error recovery

Source port # Dest port #

32 bits

Application
data 

(message)

UDP segment format

Length Checksum
Length, in

bytes of UDP
segment,
including
header



8

UDP Checksum

Sender:
• Treat segment contents as

sequence of 16-bit integers
• Checksum: addition (1’s

complement sum) of segment
contents

• Sender puts checksum value
into UDP checksum field

Receiver:
• Compute checksum of

received segment
• Check if computed checksum

equals checksum field value:
• NO - error detected
• YES - no error detected

But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment – optional use!



9

High-Level TCP Characteristics

• Protocol implemented entirely at the ends
• Fate sharing (on IP)

• Protocol has evolved over time and will continue
to do so

• Nearly impossible to change the header
• Use options to add information to the header
• Change processing at endpoints
• Backward compatibility is what makes it TCP
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TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK
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Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion

collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75
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TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit 

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
delay-based

congestion avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

NewReno startup
and loss recovery

1996
FACK TCP

(Mathis et al)
extension to SACK
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Outline

• Transport introduction

• Error recovery & flow control
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Stop and Wait

Time

Packet

ACKTi
m

eo
ut

• ARQ
• Receiver sends

acknowledgement (ACK)
when it receives packet

• Sender waits for ACK and
timeouts if it does not
arrive within some time
period

• Simplest ARQ protocol
• Send a packet, stop and

wait until ACK arrives

Sender Receiver
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Recovering from Error
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ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK
Ti

m
eo

ut

Time

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost Packet lost Early timeout
DUPLICATE
PACKETS!!!
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• How to recognize a duplicate
• Performance

• Can only send one packet per round trip

Problems with Stop and Wait
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How to Recognize Resends?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is finite
 How big should it be?
• For stop and wait?

• One bit – won’t send seq #1
until received ACK for seq #0

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1ACK 0
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How to Keep the Pipe Full?

• Send multiple packets without
waiting for first to be acked
• Number of pkts in flight = window:

Flow control
• Reliable, unordered delivery

• Several parallel stop & waits
• Send new packet after each ack
• Sender keeps list of unack’ed

packets; resends after timeout
• Receiver same as stop & wait

• How large a window is needed?
• Suppose 10Mbps link, 4ms delay,

500byte pkts
• 1? 10? 20?

• Round trip delay * bandwidth =
capacity of pipe
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Sliding Window

• Reliable, ordered delivery
• Receiver has to hold onto a packet until all prior

packets have arrived
• Why might this be difficult for just parallel stop & wait?
• Sender must prevent buffer overflow at receiver

• Circular buffer at sender and receiver
• Packets in transit ≤ buffer size
• Advance when sender and receiver agree packets at

beginning have been received
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ReceiverSender

Sender/Receiver State

… …

Sent & Acked Sent Not Acked

OK to Send Not Usable

… …

Max acceptable

Receiver window

Max ACK received Next seqnum

Received & Acked Acceptable Packet

Not Usable

Sender window

Next expected



21

Sequence Numbers

• How large do sequence numbers need to be?
• Must be able to detect wrap-around
• Depends on sender/receiver window size

• E.g.
• Max seq = 7, send win=recv win=7
• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be ≥ send window + recv window
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Window Sliding – Common Case

• On reception of new ACK (i.e. ACK for something that was
not acked earlier)
• Increase sequence of max ACK received
• Send next packet

• On reception of new in-order data packet (next expected)
• Hand packet to application
• Send cumulative ACK – acknowledges reception of all packets up

to sequence number
• Increase sequence of max acceptable packet
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Loss Recovery

• On reception of out-of-order packet
• Send nothing (wait for source to timeout)
• Cumulative ACK (helps source identify loss)

• Timeout (Go-Back-N recovery)
• Set timer upon transmission of packet
• Retransmit all unacknowledged packets

• Performance during loss recovery
• No longer have an entire window in transit
• Can have much more clever loss recovery
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Go-Back-N in Action
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Important Lessons

• Transport service
• UDP  mostly just IP service
• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple
• Go-back-n  can keep link utilized (except w/ losses)
• Selective repeat  efficient loss recovery -- used in

SACK
• Sliding window flow control

• Addresses buffering issues and keeps link utilized
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Good Ideas So Far…

• Flow control
• Stop & wait
• Parallel stop & wait
• Sliding window

• Loss recovery
• Timeouts
• Acknowledgement-driven recovery (selective repeat or

cumulative acknowledgement)



27

Outline

• TCP flow control

• Congestion sources and collapse

• Congestion control basics
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More on Sequence Numbers

• 32 Bits, Unsigned  for bytes not packets!

• Why So Big?
• For sliding window, must have
 |Sequence Space| > |Sending Window| + |Receiving Window|

• No problem
• Also, want to guard against stray packets

• With IP, packets have maximum lifetime of 120s
• Sequence number would wrap around in this time at 286MB/s
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TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes without

receiving an acknowledgement
• When the data is acknowledged then the window

slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has space for
• Original TCP always sent entire window

• Congestion control now limits this
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Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked
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acknowledged sent to be sent outside window

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options…

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options...

Packet Sent Packet Received

App write

Window Flow Control: Send Side



32

Performance Considerations

• The window size can be controlled by receiving
application

• Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)

• The window size field in the TCP header limits the
window that the receiver can advertise

• 16 bits  64 KBytes
• 10 msec RTT  51 Mbit/second
• 100 msec RTT  5 Mbit/second
• TCP options to get around 64KB limit  increases

above limit
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Outline

• TCP connection setup/data transfer

• TCP reliability
• How to recover from lost packets

• TCP congestion avoidance
• Paper for Monday
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Establishing Connection:
Three-Way handshake

• Each side notifies other of
starting sequence number it
will use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Security issues

• Each side acknowledges
other’s sequence number
• SYN-ACK: Acknowledge

sequence number + 1
• Can combine second SYN

with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server
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Outline

• TCP connection setup/data transfer

• TCP reliability
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Reliability Challenges

• Congestion related losses
• Variable packet delays

• What should the timeout be?
• Reordering of packets

• How to tell the difference between a delayed packet
and a lost one?
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TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to the sender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission
• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost
• Network is congested  shouldn’t overload it

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet – Why?
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Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low  RTT estimate
• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – never more than a

window worth of packets in flight
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Original TCP Round-trip Estimator

• Round trip times
exponentially averaged:
• New RTT = α (old RTT) +

(1 - α) (new sample)
• Recommended value for

α: 0.8 - 0.9
• 0.875 for most TCP’s

0

0.5

1

1.5

2

2.5

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing premature timeouts
• Why?
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RTT Sample Ambiguity

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment
• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful transmission

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X
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Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar
• new_rttvar = β * dev + (1- β) old_rttvar

• Dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation
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Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current time into
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet
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Timer Granularity

• Many TCP implementations set RTO in multiples
of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary quickly due to

cross traffic
• What happens for the first couple of packets?

• Pick a very conservative value (seconds)
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Fast Retransmit -- Avoiding Timeouts

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss
• Don’t wait for timeout to retransmit packet
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Fast Retransmit

Time

Sequence No Duplicate Acks

RetransmissionX

Packets

Acks
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TCP (Reno variant)

Time

Sequence No
X

X

XX

Now what? - timeout

Packets

Acks
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SACK

• Basic problem is that cumulative acks provide little
information

• Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
• Implemented as a TCP option
• Encoded as a set of received byte ranges (max of 4

ranges/often max of 3)
• When to retransmit?

• Still need to deal with reordering  wait for out of order
by 3pkts
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SACK

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

Packets

Acks
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Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers
• Don’t have 3 packets outstanding

• What are real loss patterns like?
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Important Lessons

• Three-way TCP Handshake
• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them?  e.g. fast retransmit
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Outline

• TCP flow control

• Congestion sources and collapse

• Congestion control basics
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Internet Pipes?

• How should you control
the faucet?
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Internet Pipes?

• How should you control
the faucet?
• Too fast – sink overflows!
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Internet Pipes?

• How should you control
the faucet?
• Too fast – sink overflows!
• Too slow – what happens?
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Internet Pipes?

• How should you control the
faucet?
• Too fast – sink overflows
• Too slow – what happens?

• Goals
• Fill the bucket as quickly as

possible
• Avoid overflowing the sink

• Solution – watch the sink
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Plumbers Gone Wild!

• How do we prevent water
loss?

• Know the size of the
pipes?
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Plumbers Gone Wild 2!

• Now what?
• Feedback from the bucket or

the funnels?
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Congestion

• Different sources compete for resources inside
network

• Why is it a problem?
• Sources are unaware of current state of resource
• Sources are unaware of each other

• Manifestations:
• Lost packets (buffer overflow at routers)
• Long delays (queuing in router buffers)
• Can result in throughput less than bottleneck link (1.5Mbps

for the above topology)  a.k.a. congestion collapse

10 Mbps

100 Mbps

1.5 Mbps
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Congestion Collapse

• Definition: Increase in network load results in
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• Classical congestion collapse
• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in

network
• Solution: congestion control for ALL traffic
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Congestion Control and Avoidance

• A mechanism which:
• Uses network resources efficiently
• Preserves fair network resource allocation
• Prevents or avoids collapse

• Congestion collapse is not just a theory
• Has been frequently observed in many networks
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Approaches Towards Congestion
Control

• End-end congestion
control:
• No explicit feedback from

network
• Congestion inferred from

end-system observed loss,
delay

• Approach taken by TCP

• Network-assisted
congestion control:
• Routers provide feedback to

end systems
• Single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

• Explicit rate sender
should send at

• Problem: makes routers
complicated

• Two broad approaches towards congestion control:
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Example: TCP Congestion Control

• Very simple mechanisms in network
• FIFO scheduling with shared buffer pool
• Feedback through packet drops

• TCP interprets packet drops as signs of congestion and
slows down

• This is an assumption: packet drops are not a sign of congestion
in all networks

• E.g. wireless networks

• Periodically probes the network to check whether more
bandwidth has become available.
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Important Lessons

• Transport service
• UDP  mostly just IP service
• TCP  congestion controlled, reliable, byte stream

• Types of ARQ protocols
• Stop-and-wait  slow, simple
• Go-back-n  can keep link utilized (except w/ losses)
• Selective repeat  efficient loss recovery

• Sliding window flow control
• TCP flow control

• Sliding window  mapping to packet headers
• 32bit sequence numbers (bytes)
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Important Lessons

• Why is congestion control needed?

• Next paper: How to evaluate congestion control
algorithms?
• Why is AIMD the right choice for congestion control?

• Later: Is AIMD always the right choice?  (XCP)


