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Abstract

Database system architectures face a rapidly evolving operating environment where millions
of users store and access terabytes of data. To cope with increasing demands for performance high-
end DBMS employ parallel processing techniques coupled with a plethora of sophisticated fea-
tures. However, the widely adopted work-centric thread-parallel execution model entails several
shortcomings that limit server performance, the most important being failure to exploit instruction
and data commonality across concurrent requests. Moreover, the monolithic approach in DBMS
software has lead to complex designs which are difficult to extend.

This thesis introduces a staged design for high-performance, evolvable DBMS that are easy to
fine-tune and maintain. I propose to break the database system into modules and encapsulate them
into self-contained stages connected to each other through queues. The staged, data-centric design
remedies the weaknesses of modern DBMS by providing solutions at (a) the hardware level: it
optimally exploits the underlying memory hierarchy, and (b) at a software engineering level: it is
more scalable, easier to extend, and more readily fine-tuned than traditional database systems.



2



3

1 Introduction
Database management systems (DBMS) are responsible for executing time-critical operations and
supporting an increasing base of millions of users. To cope with high demands for performance
and usability modern database systems (a) use a work-centric multi-threaded (or multi-process)
execution model, and (b) employ a multitude of sophisticated tools. However, the techniques for
boosting performance and functionality also introduce several hurdles. The threaded execution
model entails several shortcomings that limit performance under changing workloads. Uncoordi-
nated memory references from concurrent queries may cause poor utilization of the memory hier-
archy. In addition, the complexity of modern DBMS poses several software engineering problems
such as difficulty in introducing new functionality or in predicting system performance. Further-
more, the monolithic approach in designing and building database software helped cultivate the
view that “the database is the center of the world.” Additional front/back-ends or mediators
[Wie92] add to the communication and CPU overhead.

Database researchers indicate the need for a departure from traditional DBMS designs
[Be+98][CW00][SZ+96] due to changes in the way people store and access information online.
Research [MDO94] has shown that the CPU/memory speed mismatch affects database workloads
more than other scientific or desktop applications. Work in cache conscious database systems
improves the cache performance of query processing algorithms [SKN94]. Subsequent indepen-
dent studies of DBMS performance on modern processors [AD+99][KP+98][LB+98] narrow the
primary memory-related bottlenecks to first-level instruction and second-level data cache misses.
Novel data placement schemes [AD+01] reduce level two data cache misses, however, first level
instruction cache misses and misses occurring when concurrent threads replace each other’s work-
ing sets [JK99][RB+95], have yet to be addressed. Larus and Parkes proposed cohort scheduling, a
grouped request execution discipline, and showed a reduction in L1 instruction cache misses for
two simple, custom built-servers [LP02]. Microsoft’s SQL Server implements a mechanism to
share concurrent file scans across queries [Co01]. Although related work identifies memory-
related bottlenecks and proposes techniques to boost performance, current DBMS designs do not
have the means to exploit commonality across all levels of the memory hierarchy.

My thesis proposal introduces the Staged Database System design for high-performance,
evolvable DBMS that are easy to tune and maintain. I propose to break the DBMS software into
multiple modules and to encapsulate them into self-contained stages connected to each other
through queues. Each stage exclusively owns data structures and sources, independently allocates
hardware resources, and makes its own scheduling decisions. This staged, data-centric approach
improves current DBMS designs by providing solutions (a) at the hardware level: it optimally
exploits the underlying memory hierarchy and takes direct advantage of multi-processor and
multi-threaded systems, and (b) at a software engineering level: it aims at a highly flexible, exten-
sible, easy to program, monitor, tune and evolve platform. My thesis is that 

by organizing and assigning system components into self-contained stages, database systems
can exploit instruction and data commonality across concurrent requests thereby increasing
throughput. Furthermore, staged database systems are more scalable, easier to extend, and more
readily fine-tuned than traditional database systems.

Upon completion, my thesis work will:
• Provide an analysis of design shortcomings in modern DBMS software.
• Demonstrate a high-performance, scalable DBMS design built on self-contained stages.

• Propose and evaluate query scheduling algorithms for staged database systems.
• Implement efficient fine-grain self-tuning techniques for staged DBMS.

• Demonstrate the extensibility of the staged design by integrating an external application into it.
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The proposal is organized as follows. The next section reviews related work. Section 3 pre-
sents the preliminary thesis work, structured in three steps: identification of problems in current
DBMS designs, description of the proposed staged database system design, and a study of associ-
ated scheduling trade-offs. Section 4 contains the ongoing and future work. The ongoing work
consists of two steps: exploit instruction commonality across concurrent requests inside a staged
database engine (Section 4.1), and share private working data across concurrent queries (Sec. 4.2).
Future work is also divided into two steps: build a scalable staged database engine for multi-pro-
cessor systems (Sec. 4.3), and demonstrate the extensibility and tuning efficiency of the new
design (Sec. 4.4). The proposal’s plan and goals are summarized in Section 5.

2 Related work
In the past three decades of database research, several new software designs have been proposed.
One of the earliest prototype relational database systems, INGRES [SW+76], actually consisted of
four “stages” (processes) that enabled pipelining (the reason for breaking up the DBMS software
was main memory size limitations). Staging was also known to improve CPU performance in the
mid-seventies [AWE]. Parallel database systems [DG92][CHM95] exploit the inherent parallelism
in a relational query execution plan and apply a dataflow approach for designing high-perfor-
mance, scalable systems. In the GAMMA database machine project [De+90] each relational oper-
ator is assigned to a process, and all processes work in parallel to achieve either pipelined
parallelism (operators work in series by streaming their output to the input of the next one), or par-
titioned parallelism (input data are partitioned among multiple nodes and operators are split into
many independent ones working on a part of data). In extensible DBMS [CH90], the goal was to
facilitate adding and combining components (e.g., new operator implementations). Both parallel
and extensible database systems employ a modular system design with several desirable proper-
ties, but there is no notion of cache-related interference across multiple concurrent queries.

Recent database research focuses on a data processing model where input data arrives in mul-
tiple, continuous, time-varying streams [BB+02]. The relational operators are treated as parts of a
chain where the scheduling objective is to minimize queue memory and response times, while pro-
viding results at an acceptable rate or sorted by importance [UF01]. Avnur et al. propose eddies, a
query processing mechanism that continuously reorders pipelined operators in a query plan, on a
tuple-by-tuple basis, allowing the system to adapt to fluctuations in computing resources and data
characteristics [AH00]. Operators run as independent threads, using a central queue for schedul-
ing. While the aforementioned architectures optimize the execution engine’s throughput by chang-
ing the invocation of relational operators, they do not exploit cache-related benefits. Work in
“cache-conscious” DBMS optimizes query processing algorithms [SKN94], index manipulation
[CGM01][CLH00][GL01], and data placement schemes [AD+01]. Such techniques improve the
locality within each request, but have limited effects on the locality across requests. Context-
switching across concurrent queries is likely to destroy data and instruction locality in the caches.
For instance, when running transaction processing workloads, most misses occur due to conflicts
between threads whose working sets replace each other in the cache [JK99][RB+95].

Recent OS research introduced cohort scheduling [LP02], which assembles cohorts of similar
tasks and schedules their execution together to reduce memory stalls. Applications are organized
into stages using a staged library and a scheduler repeatedly executes requests one stage at a time.
The authors built a simple web server and a publish-subscribe server to demonstrate the benefits of
this approach. Research on compilers proposes code layout optimizations to reduce instruction
cache misses for database workloads [RB+01]. Thread scalability is limited when building highly
concurrent applications [Ous96][PDZ99]. Related work suggests inexpensive implementations for
context-switching [AB+91][BM98], and also proposes event-driven architectures with limited
thread usage, mainly for internet services [PDZ99]. Welsh et al. propose a staged event-driven
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architecture (SEDA) for deploying highly concurrent internet services [WCB01]. SEDA decom-
poses an event-driven application into stages connected by queues to prevent resource overcom-
mitment when demand exceeds the server’s capacity. SEDA does not optimize for memory
hierarchy performance, which is the primary bottleneck for data-intensive applications.

3 Preliminary thesis work
This thesis proposal is motivated by two observations. First, the monolithic design of today’s
DBMS software has lead to complex systems that are difficult to maintain and extend. Second, the
prevailing thread-based execution model yields poor cache performance in the presence of multi-
ple clients. As the processor/memory speed-gap and the demand for massive concurrency
increases, memory-related delays and context-switch overheads hurt DBMS performance even
more. The preliminary thesis work consists of three steps:
• Step 0 (Section 3.1) discusses the problems related to the above mentioned two observations.

• Step 1 (Sec. 3.2) introduces the Staged Database System design which addresses the problems
of current designs.

• Step 2 (Sec. 3.3) presents a scheduling analysis needed to achieve basic system operation.

3.1 Step 0: Problems in current DBMS design

3.1.1  Pitfalls of monolithic DBMS design

Extensibility. Modern DBMS are difficult to extend and evolve. While commercial database soft-
ware offers a sophisticated platform for efficiently managing large amounts of data, it is rarely
used as stand-alone service. DBMS require the rest of the applications to communicate with each
other and coordinate their accesses through the database. Overall system performance degrades
due to unnecessary CPU computation and communication latency on the data path. The alterna-
tive, extending the DBMS to handle data conversions and application logic, is a difficult process,
since typically there is no well-defined API and security concerns limit the exported functionality.
Tuning. Database software complexity makes it difficult to identify resource bottlenecks and
properly tune the DBMS in heavy load conditions. A DBA relies on statistics and system reports to
tune the DBMS, but has no clear view of how the different modules and resources are used as cur-
rent systems can only monitor resource utilization at a coarse granularity. Based on this informa-
tion it is difficult to build automatic tuning tools to ease DBMS administration. Furthermore, when
requests exceed the database server’s capacity, new clients are either rejected or experience signif-
icant delays. Yet, some of them could still receive fast service (e.g., if they need a cached tuple).

3.1.2  Pitfalls of thread-based concurrency

Modern database systems process concurrent queries by multiplexing their execution using a pool
of threads or processes1. Each thread executes its assigned task until it blocks on a synchronization
condition or an I/O event, or its time quantum has elapsed. The CPU will then switch context and
run a different thread. While this widely used model [IBM01][MS00] ensures fairness and low
response times, it has several shortcomings:

1. No single number of preallocated worker threads can yield optimal performance under chang-
ing workloads. Too many threads waste resources and too few threads restrict concurrency.

1. The choice between threads or processes also depends on the underlying operating system. Since this choice is an implementation
detail, it does not affect the generality of our study.
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2. Preemption is oblivious to the thread’s current execution state. Context-switches that occur in
the middle of a logical operation evict a possibly larger working set from the cache. When the
suspended thread resumes execution, it wastes time restoring the evicted working set.

3. Round-robin scheduling does not exploit cache locality across threads at their current state.
Current schedulers do not examine cache contents when selecting the next thread to run.

4. Thread-based concurrency gives little or no control to the database programmer of how to
detect and exploit commonality in each query’s private working data set. Concurrent queries
may perform overlapping work yet few techniques to date take advantage of it.

The first three shortcomings are also depicted in Figure 1. Four concurrent queries handled by
four worker threads pass through the optimizer or the parser of a single-CPU database server. The
example assumes that no I/O takes place. Whenever the CPU resumes execution on a query, it first
loads (fetches from main memory) the thread’s private state. Then, during each module’s execu-
tion, the CPU also spends time loading the data and code that are shared on average between all
queries executing in that module (shown as a separate striped box after the context-switch over-
head). A subsequent invocation of a different module will likely evict the data structures and
instructions of the previous module, to replace them with its own ones. The performance loss in
this example is due to (a) a large number of worker threads: since no I/O takes place, one worker
thread would be sufficient, (b) preemptive thread scheduling: optimization and parsing of a single
query is interrupted, resulting in unnecessary reloads of its working set, and (c) round-robin sched-
uling: optimization and parsing of two different queries are not scheduled together and, thus, the
two modules keep replacing each other’s data and code in the cache. 

3.2 Step 1: Staged Database System design [HA03]

A staged database system consists of self-contained modules, each encapsulated into a stage. A
stage is an independent server with its own queue, thread support, and resource management that
communicates and interacts with the other stages through a well-defined interface. Stages accept
packets, each carrying a query’s state and private data (the query’s backpack), perform work on the
packets, and may enqueue the same or newly created packets to other stages. The first-class citizen
is the query, which enters stages according to its needs. Each stage is centered around exclusively
owned (to the degree possible) server code and data. There are two levels of CPU scheduling: local
thread scheduling within a stage and global scheduling across stages. This design promotes stage
autonomy, data and instruction locality, and minimizes the usage of global variables.

We divide at the top level the actions the database server performs into five query execution
stages (see Figure 2): connect, parse, optimize, execute, and disconnect. The execute stage typi-
cally represents the largest part of a query’s lifetime and is further decomposed (described in Sec-

FIGURE 1: Uncontrolled context-switching can lead to poor performance.
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tion 3.2.2). The break-up objective is (a) to keep accesses to the same data structures together, (b)
to keep instruction loops within a single stage, and (c) to minimize the query’s backpack. For
example, connect and disconnect execute common code related to client-server communication:
they update the server’s statistics, and create/destroy the client’s state and private data. Likewise,
while the parser operates on a string containing the client’s query, it performs frequent lookups
into a common symbol table. The design in Figure 2 is general enough to apply to any modern
relational DBMS, with minor adjustments. For example, commercial DBMS support precompiled
queries that bypass the parser and the optimizer. In our design the query can route itself from the
connect stage directly to the execute stage. Figure 2 also shows certain operations performed
inside each stage. Depending on each module’s data footprint and code size, a stage may be further
divided into smaller stages that encapsulate operation subsets (to better match the cache sizes).

3.2.1  Stage definition

A stage provides two basic operations, enqueue and dequeue, and a queue for the incoming pack-
ets. The stage-specific server code is contained within dequeue. The proposed system works
through the exchange of packets between stages. A packet represents work that the server must
perform for a specific query at a given stage. It first enters the stage’s queue through the enqueue
operation and waits until a dequeue operation removes it. Then, once the query’s current state is
restored, the stage specific code is executed. Depending on the stage and the query, new packets
may be created and enqueued at other stages. Eventually, the stage code returns by either (i)
destroying the packet (if done with that query at the specific stage), (ii) forwarding the packet to
the next stage (i.e. from parse to optimize), or by (iii) enqueueing the packet back into the stage’s
queue (if there is more work but the client needs to wait on some condition). Queries use packets
to carry their state and private data. Each stage is responsible for assigning memory resources to a
query. As an optimization, in a shared-memory system, packets can carry only pointers to the
query’s state and data structures (which are kept in a single copy). 

Each stage employs a pool of worker threads (stage threads) that continuously call dequeue on
the stage’s queue, and one thread reserved for scheduling purposes (scheduling thread). More than
one threads per stage help mask I/O events while still executing in the same stage (when there are
more than one packets in the queue). If all threads happen to suspend for I/O, or the stage has used
its time quantum, then a stage-level scheduling policy specifies the next stage to execute. When-

FIGURE 2: The Staged Database System design: Each stage has its own queue and thread support. New
queries queue up in the first stage, they are encapsulated into a “packet”, and pass through the five stages
shown on the top of the figure. A packet carries the query’s “backpack”: its state and private data. Inside
QPIPE, the staged execution engine, a query can issue multiple packets to increase parallelism.
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ever enqueue causes the next stage’s queue to overflow, a back-pressure flow control mechanism
suspends the enqueue operation (and subsequently freezes the query's execution thread in that
stage). Queries that do not call enqueue on the blocked stage will continue to run.

3.2.2  Qpipe: A staged relational execution engine

Relational database engines typically evaluate query execution plans (QEP) which represent a
compiled (parsed and optimized) query. A QEP consists of relational operators that form a tree.
Data flow from the leaf nodes (stored tuples) through the intermediate nodes (as intermediate
results) and to the root of the tree (final query results). Relational operators consume their chil-
dren’s output and produce tuples for their parent node, forming data pipelines. Two methods of
evaluating a QEP are the iterator (or pull) and push models [Gra96]. The iterator model recur-
sively invokes the children nodes starting at the root, and produces results in a postfix fashion. In
the push model, the leaf nodes keep producing tuples and push them through their parents to the
root. A producer-consumer relationship regulates the data flow.

Qpipe is the relational execution engine of the staged database design. Qpipe replaces tradi-
tional relational operators with Qpipe Operators, or Qops2 for short. A Qop contains DBMS-spe-
cific code along with a queue for incoming requests, and acts as a scaled-down engine. Queries
exist in the form of one or more packets which queue up in front of a Qop. A query issues as many
packets as the operators in the QEP (query execution plan). The actual data transfer through Qops
happens via dedicated, per-query record buffers that are set up as part of a query’s execution ini-
tialization. The QEP evaluation follows the “push” model. Before a query enters Qpipe it goes
through an initialization phase (illustrated in Figure 3). It traverses the operator tree (left most part
of the figure) and sets up a similar tree of private record buffers. Qops will write the data they pro-
duce in the corresponding buffer for that query, while the parent Qop will consume data from that
buffer. In shared-memory systems Qops process pointers to a single record copy, while in non
shared-memory systems Qops ship pages in the CPU the parent Qop resides (same way as in
GAMMA [De+90], but in Qpipe there is only one Qop serving multiple concurrent queries). Once
the query sets up the record buffers, it enqueues as many packets as the QEP leaves to the corre-
sponding Qops. In the example of Figure 3, the query enqueues two packets in Qop A and one
packet in Qop B (time t1). These packets “ask” the Qop to work on behalf of the query and start
filling the output record buffer. The QEP leaf nodes work in parallel and activate a parent Qop by

2. pronounced “que-ops”
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FIGURE 3: Query execution example in Qpipe. The QEP is a tree containing four operators: A, B, C, and
D. Each operator corresponds to a Qop (shown on the bottom part). The query first sets up a similar tree of
pages with pointers to records. Then it creates as many packets as the leaves of the tree and enqueues them
to the Qops (time t1). Qops A and B work in parallel. When enough records are placed in the record buffers
that Qop C will read from, a new packet is enqueued (time t2). Same with Qop D at time t3.
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enqueueing a new packet when enough data accumulate in the parent Qop’s input buffers. Eventu-
ally, all Qops in the QEP are activated while data keep flowing from the leaves to the root of the
QEP (time t2 and t3 in Figure 3).

3.3 Step 2: Preliminary study of scheduling trade-offs [HA02]

There is a fundamental scheduling trade-off in any staged execution scheme that tries to exploit
locality by queueing and executing requests on a per module basis. The trade-off is between
decreasing cache misses for a group of requests in the same software module while increasing
response time of other requests that need to access different modules. The challenge is to find
scheduling policies that exploit a module’s affinity to memory resources while improving through-
put and response time. This step evaluates database systems as a candidate for a staged execution
scheme by studying this trade-off. In order to compare alternative strategies for forming and
scheduling batches of queries at various degrees of inter-query locality, we develop a simulated
database execution environment that is also analytically tractable.

3.3.1  Staged model

Each submitted query passes through several
stages of execution that contain a server mod-
ule (see Figure 4). For instance, such a mod-
ule is the parser or the optimizer of the
database. Once a module’s data structures and
instructions, that are shared (on average) by
all queries, are accessed and loaded in the
cache, subsequent executions of different
requests within the same module will significantly reduce memory delays. To model this behavior,
we charge the first query in a batch with an additional CPU demand (quantity  in Figure 4). The
model assumes, without loss of generality, that the entire set of a module's data structures that are
shared on average by all requests can fit in the cache, and that a total eviction of that set takes place
when the CPU switches to a different module. The prevailing scheduling policy processor-sharing
(PS) fails to reuse cache contents, since it switches from query to query in a random way with
respect to the query’s current execution module. The model described here can also apply to a
wide class of servers that follow a “production-line” model of operation (see [HA02] for an exam-
ple, along with a Markov chain based analysis of the proposed algorithms).

3.3.2  Scheduling algorithms

The execution flow in the model is purely sequential, thereby reducing the search space for sched-
uling policies into combinations of the following parameters: the number of queries that form a
batch at a given module (one, several, all), the time they receive service (until completion or up to
a cutoff value), and the module visiting order. We consider two basic policies, d-gated and t-
gated(N), and a variation of those, c-gated.
• D-gated (dynamic-gated) dynamically imposes a gate on the incoming queries, and executes the

admitted group of queries as a batch at each module, up to their completion. Execution takes
place in a first-come first-served basis at the queue of each module. When the admitted batch
finishes execution, the CPU shifts to the first module, admits all accumulated queries, and
imposes a gate to the rest of incoming queries. Note that d-gated reduces to FCFS whenever
there is at most one query queued up at the first module.

• T-gated(N) (threshold-gated) explicitly defines an upper threshold N for the number of queries
that will pass through the first module and form a batch of size N. Whenever there are more

FIGURE 4: A production-line model for staged servers.
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than N queries queued up, the CPU admits the first N of them and considers the rest only after
the completion of the selected batch. A possible issue with D- and T-gated is that a very large
query can block the way to other, smaller ones, thereby causing higher response times.

• C-gated (cutoff-gated) complements the previous policies by applying an additional cutoff
value to the time the CPU spends on a given query at a given module. Whenever the CPU
exceeds that cutoff value, the current query is left behind and rejoins the next batch. This way,
both small and large queries make progress while still benefiting from increased data locality.

In order to compare the different schedul-
ing policies, the incoming queries are modeled
on a Poisson arrival stream with sizes (CPU
demand) drawn from an exponential distribu-
tion. Whenever a query starts execution at a
module and the common data structures do not
already lie in the cache (this happens when the
CPU was previously working on a different
module), then the query is charged with an
additional fixed CPU demand, for that module.
This extra CPU demand represents the time
spent in memory stalls due to common data
structures fetching from main memory to
cache, for a given query. Figure 5 shows the
relative speedup of T-gated(2) over PS, for a
wide range of different locality scenarios. The x-axis is the percentage of execution time of a query
spent servicing cache misses that are attributed (on average) to common data structures of a mod-
ule. A query that finds all modules “warmed up” will execute faster by that percentage. In Figure 3
we vary this value from 1% to 70%. The y-axis is the server load; we varied the arrival rate to
achieve server loads between 1% and 98%. On the right of the y-axis we denote the areas where
the relative speedup of T-gated(2) over PS is within a certain range. Areas with darker color corre-
spond to higher speedup, while the white area corresponds to those combinations that both policies
perform almost the same. PS is only able to perform better in a small area on the left of the graph;
the relative speedup of PS in that area does not exceed 1.1. The full experimentation and simula-
tion results for all policies considered can be found in [HA02].

4 Ongoing and future work
We are currently implementing Qpipe on top of the Shore [Ca+94] storage manager. The reasons
for choosing this particular system are: (a) it has a modular code design, (b) it is well-documented,
and (c) its behavior closely matches modern commercial DBMS [AD+01]. We have also modified
Predator [SLR97], an object-relational DBMS also built on top of Shore, for experiments that
require full staged DBMS functionality. The rest of this section describes ongoing and future thesis
work. It is organized in four steps (step 3 through step 6):
• Ongoing work focuses on Qpipe on a single-CPU system. We target performance benefits by

sharing instructions (step 3, Section 4.1) and data (step 4, Sec. 4.2) across queries at each Qop.
• Future work on Qpipe (step 5, Sec. 4.3) will focus on Qop scheduling, and port the implementa-

tion to a new platform to support multi-processor and multi-threaded systems. We will study
scheduling algorithms for SMP/SMT systems, and demonstrate a scalable version of Qpipe.

• Future work on the Staged Database design (step 6, Sec. 4.4) will focus on self-tuning and
extensibility of a staged DBMS built around Qpipe.
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4.1 Step 3: Vertical query execution (ongoing work)

Commercial database engines typically use a
pool of threads (or processes) to evaluate con-
current queries. Each thread is assigned to a
query and is responsible for executing part or all
of the QEP. When a thread runs, it may invoke
multiple operators, depending on the query,
before giving up the CPU for a different query
(performing a context-switch). We call this type
of execution a “horizontal” traverse. Instead, a “vertical” traverse would keep executing the same
operator for a group of queries before switching to a different operator. Figure 6 shows how verti-
cal execution works across queries. Same color circles correspond to the same operators. The dot-
ted line shows the order in which the CPU visits each operator for the three concurrent queries.
Qpipe applies vertical execution by repeatedly processing the queue of a Qop before the CPU
switches to a different Qop.

The potential benefits of verti-
cally executing multiple queries are
in sharing instructions and data
across different queries at all levels
of the memory hierarchy. Table 1
lists the different types of data and
instructions in a database execution
engine implementation. Instruc-
tions are always common across
queries and can be shared. Common
data, such as the database catalog, is accessed by all queries. Although this type of data could be
shared at the higher levels of the memory hierarchy, its size is much smaller than a query’s private
data, and thus, the overall savings are not significant. Private data that include the stack of each
query cannot be shared. Private data that include intermediate results could be shared when two or
more queries compute the same or almost the same intermediate result. Shared data, such as data-
base tables and indices, can also be shared when two or more queries access overlapping regions.
The last two cases for data sharing are covered in the next step (Section 4.2). The rest of this sec-
tion examines the potential of instruction sharing across queries in Qpipe.

4.1.1  Making Qops I-cache resident

Recent studies [AD+99][LB+98] of database workloads on modern processors have shown that in
most cases first-level instruction cache misses are an important stall factor, while L2 instruction
misses have a limited effect on overall performance. To examine the potential of instruction shar-
ing at the L1 cache across different queries in Qpipe, we classify Qops into three types: (i) sQops
which contain relatively sequential code with no loops (typically operating on a single tuple, such
as index probe), (ii) lQops which contain a code loop (e.g., nested loop join), and (iii) s+lQops
which have both sequential code and loops (such as reading a page of tuples). lQops and s+lQops
with the loop component taking significantly more time than the sequential component, present the
least opportunity for sharing instructions across queries, since a loop already reuses instructions to
a certain degree. If a s+lQop has equally large sequential and loop components then we may con-
sider breaking it into separate sQops and lQops. If a sQop’s code fits in the L1 cache then its
instructions can be shared across queries. Otherwise, we will need to (a) identify components of
the sQop that fit in the L1 cache and then, (b) apply vertical execution within the sQop.

FIGURE 6: Horizontal vs. vertical execution.
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(a) The first step is to divide the sQop code into L1 cache-contained components. Code seg-
ments that fit entirely in the cache can be shared across multiple queries, reducing significantly the
number of L1 instruction misses. To effectively apply our methodology the following two condi-
tions must hold: (i) L1 conflict misses are significantly fewer than the cold misses, and (ii) all que-
ries follow almost the same code path, or a subset of the component’s instructions. Conflict misses
cannot be dealt with at the software level, but we can accommodate different code paths with dif-
ferent classes of Qops. In our experiments so far on a Pentium III we did not encounter any prob-
lems with conflict misses. The rule for deciding the limits of each component is that the number of
L1 instruction misses must be close but smaller than the number of L1 instruction cache lines.
Since each miss causes at least one cache line to be fetched from L2 cache (more if there is instruc-
tion prefetching), the total number of misses gives a rough estimate of the component’s footprint
(assuming few conflict misses, and that instruction prefetching is not affected by a heavy branch-
ing pattern). To measure the number of misses for each candidate component we use PAPI
[MB+99], a library that provides an API to a processor’s hardware performance counters.

(b) Once the code components within a Qop are identified, we consider the following two
ways of applying vertical execution within the Qop: (i) We assign each query to a thread and we
insert yield() operations in the boundaries of each component. By carefully setting the priorities of
each thread we can force each code component to execute subsequently for all the related queries.
The trade-off in this approach is that the context-switch cost expressed both in cycles required and
the code footprint, may eliminate the savings from vertical execution. (ii) The second approach for
applying vertical execution is to modify the Qop code to operate on an array of packets (each rep-
resenting a different query). Code segments are wrapped in a loop and execute once for each
query. This approach requires many code modifications but does not have the performance trade-
offs of the previous one. Next, we describe a case study of making a Qop I-cache resident.

4.1.2  Case study: Index probe Qop on Pentium III

We examined the index probe (single tuple retrieval) operation of the Shore Storage manager
[Ca+94]. This operation can be treated as a sQop, since the code is relatively sequential. Our target
platform is the Pentium III processor. Pentium III has a 16KB, 4-way set associative L1 instruction
cache with hardware prefetching, consisting of 500 32-byte lines (blocks). It uses the IA-32
instruction set which specifies multiple length instructions, ranging from 1 to 17 bytes. We opted
for the second approach in applying vertical execution, changing the code to operate on an array of
packets. On the specific platform, a context switch has a 200 lines code footprint and takes 2000-
3000 cycles to complete, which negates the savings from vertical execution.

Index probe in Shore consists of the following high-level operations: finding the index struc-
ture, perform a B-tree lookup operation, pin and load the located record. These operations may
include requests to the lock manager or the I/O module. By inserting in various points of the code
calls to the performance hardware counters and measuring the number of L1 instruction misses,
we identified 15-20 code segments that could potentially become cache-resident for multiple que-
ries. So far, we have modified parts of the code that account for 35% of the total number of L1-I
misses, to operate on an array of packets. To measure the performance improvement in the pres-
ence of multiple queries we performed the following experiment. We set up a database consisting
of 10 tables of 100,000 tuples each, with each tuple consisting of 25 integers. Initially we run 10
different index probes on the 10 different tables, one after another, and we measured the number of
L1-I misses and the total cycles. Then, we repeated the experiment this time using our modified
index probe Qop. In this experiment there was no I/O involved and there were no other requests in
the system. Even with only about a third of the code modified, the total number of L1-I misses
dropped from 26,709 to 19,962 (25.3% reduction), while the total processor cycles dropped from
2,703,377 to 2,273,654 (speedup of 1.19). We are currently optimizing the rest of this Qop.
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4.2 Step 4: Run-time query merging (ongoing work)

Vertical execution across multiple queries per Qop also has the benefit of exploiting commonality
of intermediate results. Whenever two or more queries have overlapping computations, Qops can
naturally detect the overlap and perform the work only once. Consider for example a file scan in
progress on a given relation. If a second query arrives at the fscan Qop and wants to start a scan on
the same relation, it can take advantage of the existing file scan. It can attach to the incoming tuple
stream and read the “missed” tuples later (assuming that the scan order is not important, e.g., it is
not a sorted file). This specific technique is actually used by commercial systems [Coo01][Fer94].

Qpipe can detect operator commonality across queries
at each Qop. This type of commonality is workload-depen-
dent and has been studied to a certain degree in the past.
Work done in multi-query optimization detects common
subexpressions at the query optimizing phase [Sel88]. The
restriction is that all queries that are probed for common
parts must be optimized as a batch before entering the exe-
cution engine. Qpipe’s query merging techniques are com-
plementary and independent of the optimizer. Furthermore,
they dynamically apply during all of a query’s lifetime. To
illustrate how query merging techniques work, consider the
two queries in Figure 7 (note that in this example we con-
sider two sort-based group-by’s instead of hash-based).
Both queries share an operator subtree and differ only in the root. If Q2 arrives after Q1 is inserted
in the execution engine, a traditional optimizer has no means of identifying and taking advantage
of the common subexpressions. In Qpipe, Q1 will enqueue packets in all participating Qops. If
Q1’s packet in sort stays enough time for Q2 to queue up at that Qop, then Q2 can take advantage
of all the work that Q1 has been doing.

Query merging is not limited to identical subtrees. If one subtree’s results can inexpensively
transform into the output of another subtree (using for example projection or additional filtering),
then we can still compute the subtree only once. Consider the following two queries: 
Q3: SELECT CustID, Amnt, Date FROM Orders ORDER BY CustID
Q4: SELECT CustID, SUM (Amnt) FROM Orders GROUP BY CustID
The sort result in Q3 differs from Q4, but can be easily reused through an additional projection
(removing the Date attribute).

4.2.1  Proposed techniques

Recall that a Qpipe packet represents work a query needs to perform at a given Qop. Whenever
two or more queries share the same subexpression (same operator subtree), one packet is sufficient
to satisfy all queries. This “merged” packet can then copy the result tuples (or pointers to them in
our implementation) into the parent buffers of all participating queries. We detect merging oppor-
tunities when a new packet is enqueued. During a query’s initialization phase we traverse the QEP
in prefix order and encode all parameters, operations and attributes pertaining to that query at each
operator. When a packet is enqueued in a Qop we compare the encoded expression with the ones
of the existing packets and merge accordingly. Note that different consumption rates among the
parents of a merged operation may dictate a packet split. Furthermore, file scans on the same rela-
tion but with different selectivities can still merge, albeit with different producing rates. Different
producing rates may negate the effect of different parent consuming rates but they can also amplify
it. Next, we outline packet merging/splitting techniques in fscan, iscan, sort, aggregate, and join
operators. The full spectrum of the techniques considered and implemented is in [HAS03].

FIGURE 7: Two “mergeable” query plans
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File scans. Two or more queries that scan the same relation can potentially merge into a single
packet serving all common queries. Newly arrived queries can attach to an existing, in-progress
scan, and retrieve the “missed” tuples using partial scans of the relation (this technique is also used
in [Coo01] and [Fer94]). To avoid a large number of partial scans covering different overlapping
and disjoint regions of the relations, Qpipe implements a new, circular form of synchronized file
scans that simplifies the management of multiple partial scans. We maintain a separate scan thread
that repeatedly scans a relation until no more queries are interested in the results. Tuples are passed
to every interested query which checks whether the tuple satisfies their selection predicates. Each
query is responsible to track down which tuples have been processed at any time. Instead of split-
ting on a slow parent, queries can skip any number of tuples and process them during the next
round. After receiving every tuple from the relation a query will detach itself from the scan thread.

Index scans. We distinguish between clustered and unclustered index scans. The most
straightforward merging technique that works for both types is to merge packets with exactly the
same predicates, that have not activated their parent yet. For clustered indices we can still exploit
partially overlapping predicates, but the effectiveness heavily depends on the query arrival order
and the nature of the overlapping predicates. Non-clustered index scans are typically performed in
two phases to avoid incurring an I/O for every tuple that matches the selection predicate. The first
step is to build a list of record IDs (RID) of the tuples that match the predicate and sort the list by
page ID. Next, the tuples are retrieved by their RIDs in sorted order that guarantees that no page is
retrieved multiple times. A new query can arrive arbitrarily late, and still be able to reuse the sorted
list of RID that is kept in memory.

Sorting operators. “Stop-and-go” operators [Gra96], such as sort, allow for a wide time win-
dow during which newly arrived queries at the same Qop and with the same subexpression can
merge with existing ones. Merging is always possible while the existing packet still scans or sorts
the file, or has started filling the parent buffer, but the parent operator is not yet activated (in the
latter case we first copy the existing packet’s parent record buffer into the new packet’s buffer). If
the existing packet is well ahead into reading the already sorted file, instead of merging, we reuse
the already sorted file. For merged packets that have parents with different consuming rates, we
first try to double the parent buffer size to avoid splitting. Otherwise, we split the packets by reus-
ing the sorted file.

Aggregating and join operators. For join and aggregate operators, new packets can always
merge with existing ones as long as the parent operator hasn’t consumed any tuples. Note that a
simple aggregate expression (i.e., without a GROUP BY clause) produces a single tuple, so merg-
ing is always possible. Splitting is actually more complicated than in the previous operators. We
are currently considering the following two alternatives: (a) Materialize the output of the active
packet and point the detached packets to that output (this approach is also used in [DS+01]). (b)
Traverse the main packet’s tree and copy all of its state into the detached packets. The trade-off in
these two approaches is additional storage vs. the overhead for creating and activating all the chil-
dren of the detached packets.

4.2.2  Experimentation

We sent two similar 3-way join queries from the Wisconsin Benchmark [De91] to both our system
(Qpipe modified to include the proposed packet merging techniques) and the original execution
engine (Predator), running on a 4-way Pentium-III 700MHz SMP server, with 2MB of L2 cache
per CPU, 4GB of shared RAM, and Linux 2.4.18. The left part of Figure 8 shows the SQL state-
ment and the execution plan for those queries. We used the integer attributes from the Wisconsin
Benchmark for all joining and group-by attributes. We used 100,000 200-byte tuple tables for the
big tables (big1 and big2) and 10,000 tuples for the small table. The only difference in the two que-
ries is the range of index scanning for table big2 (i.e., the values of X and Y differ in the two que-
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ries). While both joins in the plan are not common across the two queries (because of the different
index scan predicates) the actual join algorithm which is sort-merge in this case exhibits common-
ality in the sort operations. Both queries need to sort tables big2 and small on attribute a. As long
as the temporary sorted files are used (when created, sorted, or read), Qpipe can avoid duplicating
the ongoing work for any newly arrived queries.

The graph in the right part of Figure 8 shows the total elapsed time from the moment the first
query arrived until the system is idle again. We vary the interarrival time for the two queries from
0 secs (i.e.,the two queries arrive together) up to the time it takes the first query to finish when
alone in the system (i.e., the second query arrives immediately after the first has finished). The
graph shows that Qpipe is able to perform packet merging at the sort Qop, thereby exploiting com-
monality for most of a query’s lifetime (that’s why the line for Qpipe remains flat most of the time)
and provide up to 25% reduction in the total elapsed time. Note that both systems perform better
when the queries arrive close to each other, since the system can overlap some of the I/Os. Also,
note that when both queries execute with no overlap between them (right most data point) Qpipe
results into a slightly higher total elapsed time because of the Qop queue overhead (this overhead
actually pays off when there are multiple queries inside Qpipe).

4.3 Step 5: Extensions to Qpipe (future work)

4.3.1  Scheduling techniques for Qpipe and optimizations for storage architectures

The departure from a time-sharing thread-based execution model to a stage-based engine intro-
duces new scheduling problems. The CPU is no longer assigned directly to queries, rather it pro-
cesses stage queues which include different queries at different phases of their execution. This step
will propose and evaluate operator and query scheduling techniques for Qpipe that yield low
response time and high throughput, and ensure fairness while at the same time take advantage of
code and data commonality. In Qpipe, database tables are accessed through specialized Qops.
Because of the Qop queues, I/O requests are issued in groups and not at random points in time.
This fact allows the storage manager and the disks to perform deeper and more effective schedul-
ing. We plan to leverage this effect and also further expose the I/O Qops to the underlying storage
architecture. Ideally, I/O Qops should be pushed as close to the disks as possible.

4.3.2  Port Qpipe to multi-processor and simultaneous multi-threaded systems

High-end DBMS typically run on clusters of PCs or multi-processor systems. The database soft-
ware runs either as a different process on each CPU, or as a single process with multiple threads
assigned to the different processors. In either case, a single CPU handles a whole query or a ran-
dom part of it. Qpipe instead naturally maps one or more Qops to a dedicated CPU. Qops may also

FIGURE 8: SORT reusing in 2 join queries
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migrate to different processors to match the workload requirements. A single query in Qpipe will
visit several CPUs during the different phases of its execution. In shared memory systems the
query’s state and private data remain in one copy as the packets are routed through different pro-
cessors. In non-shared memory systems, Qop mapping incorporates the overhead of copying pack-
ets (and not pointers to them) along with each client’s private data. This scheme resembles the
architecture of parallel shared-nothing architectures (such as GAMMA [De+90]), where each
operator is assigned to a processor and parallel processing techniques are employed in order to
minimize the overhead of shipping data between the different CPUs.

A recently introduced processor feature is simultaneous multithreading (SMT) [Eg+97]
[LB+98], where the processor issues instructions from multiple threads in a single cycle. Widely
available processors have already started adopting this feature (Intel’s Pentium 4, introduced in
2002, implements a 2-way SMT technique, marketed as hyper-threading technology). Since the
simultaneously active threads inside the processor core share the same cache hierarchy, they can
benefit from increased instruction locality if they execute the same piece of code. Whereas tradi-
tional DBMS cannot control which exact piece of code each thread executes at any time, Qpipe
can schedule multiple threads belonging to the same Qop and thus exploit instruction locality. This
step will port Qpipe to SMP and SMT systems, and will demonstrated Qpipe’s scalability by pro-
posing and evaluating techniques for Qop placement, Qop replication, and query scheduling.

4.4 Step 6: Extensions to Staged Database System design (future work)

4.4.1  Self-tuning

We plan to implement a mechanism that will continuously monitor and automatically tune the fol-
lowing four parameters of a staged DBMS:
• The number of threads at each stage. This choice entails the same trade-off as the one discussed

in Section 3.1.1 but at a much smaller scale. For example, it is easier and more effective for the
stage responsible for logging to monitor the I/Os and adjust accordingly the number of threads,
rather than doing this for the whole DBMS.

• The stage size in terms of server code and functionality. Assuming that the staged DBMS is bro-
ken up into many fine-grain self-contained modules, the tuning mechanism will dynamically
merge or split stages by reassigning the various server tasks. Different hardware and system
load configurations may lead to different module assignments. 

• The page size for exchanging intermediate results among Qops. This parameter affects the time
a Qop spends working on a query before it switches to a different one.

• The choice of a thread scheduling policy. We have found that different scheduling policies pre-
vail for different system loads [HA02].

4.4.2  Extensibility: Integrate external wrappers into a staged DBMS

We plan to demonstrate the extensibility of the staged database design by integrating external
applications into the staged DBMS code base. Current integrated solutions that use the DBMS as a
back-end pay the performance penalty of a longer communication path, processing overhead, and
inefficiency in maintaining different caches for essentially the same data. A stage-integrated solu-
tion can offer fewer connections, better code and data locality, and the use of a unified cache. This
step proposes a staged, high performance integrated Web and Database server, tailored to support
cost-efficiently e-commerce applications.
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Figure 9 shows the typical infrastructure of an e-commerce site. Client requests arrive over the
internet and communication takes place through the http protocol with the Web servers of the site.
The Web servers first try to satisfy the request from their local caches, otherwise they either issue
file I/Os (which may be handled by a separate File server) or they form SQL statements and send
queries to the Database servers. The DB servers eventually send the result back to the Web server
using either their caches or the underlying data repository. There are three distinct phases in this
model: transfer - manage - store (data). By encapsulating the Web server functionality into stages
and integrate them into a staged database system, we can optimize for the “manage” phase of the
model. Similar integration solutions are discussed in [FLM98].

5 Conclusion and summary of goals
Modern database servers suffer from high processor-memory data and instruction transfer delays.
Despite the ongoing effort to create locality-aware algorithms, DBMS fail to exploit instruction
and data commonality across multiple concurrent queries. Furthermore, the current threaded exe-
cution model used in most commercial systems is susceptible to suboptimal performance caused
by an inefficient thread allocation mechanism. Looking from a software engineering point of view,
years of DBMS software development have lead to monolithic, complicated implementations that
are difficult to extend, tune and evolve.

Based on fresh ideas from the OS community [LP02][WCB01] and applying them in the com-
plex context of a DBMS server, this thesis proposal suggests a departure in the way database soft-
ware is built. The proposal for a staged, data-centric DBMS design remedies the weaknesses of
modern commercial database systems by providing solutions at both a hardware and a software
engineering level. The goals of the proposed design along with the steps that will satisfy them are:
• Increase DBMS throughput by optimizing accesses to the memory hierarchy in the presence of

multiple requests. Steps 3 and 4 will demonstrate techniques to exploit instruction and data
commonality across concurrent requests.

• Improve DBMS scalability and memory behavior on multi-processor and simultaneous multi-
threaded systems. Step 5 will port Qpipe to SMP/SMT systems, it will evaluate Qop scheduling
techniques, and will demonstrate Qpipe’s improved scalability properties.

• Make database systems easier to extend and perform fine-grain tuning. Step 6 will implement
efficient self-tuning techniques for staged DBMS, and will also demonstrate an integrated DB/
Web server.

FIGURE 9: Current Web/DB architectures (left) and the proposed integrated Web-DB design (right)
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The time line is the following:
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