
DMP Notes K. Sutner

Conway’s Fractran 2023/05/26 v0.3

1 Programming with Fractions

Here is a slightly goofy model of computation [1] that shows that universal computation can
be achieved by grade school arithmetic and a tiny bit of control-flow logic. Universal in this
context means: every possible computation whatsoever can be carried out in this framework,
in the sense that we can simulate an arbitray program, written in any language you like. The
internal workings will be different, but our simulator has the exact same input/output behavior.
Efficiency is of no interest here whatsoever.

The serious point is that systems that appear extremely weak still may support universal
computation: it lurks in places where you don’t necessarily expect to find it.

To describe our little programming language, fix an ordered list

F = (a1/b1, a2/b2, . . . , ar/br)

of positive fractions (all in lowest common terms). We want to think of F as a program that
determines a partial function F̂ : Nk ↛ N .

First, given a natural number x, define F (x) as follows:

• x ai

bi
where i is minimal such that bi | x.

• x, if there is no such i.

In other words, we find the first fraction in our list whose denominator divides x, and then
multiply x by that fraction; essentially, we replace a factor bi in x by ai. If there is no suitable
fraction we simply return x as a default value.
This procedure describes one step in a computation, for the whole computation we apply F
repeatedly until a fixed point is reached; if that never happens, F̂ is undefined on x.
We still need some input/output convention. There are several options, here is a fairly natural
one. We refer to these programs as normal. Using the standard prime encoding, we can write
input e1, e2, . . . , ek as

x = 3e15e2 . . . pek
k

1

http://www.cs.cmu.edu/~sutner/dmp.html

Now suppose F t(x) = 2e is a fixed point (so 2 is not a denominator); then we let

F̂ (e1, . . . , ek) = e

Again, if there is no fixed point of this form, we think of the function as being undefined. As
already mentioned, in general, FRC programs do not produce total functions.

Example 1: We want to compute addition, in the form of 3a5b ⇝ 2a+b. The following program
works:

F = (2/3, 2/5)
Note the order of the fractions does not matter in this case, we are just moving pebbles from
one place to another.

Example 2: We want to compute proper subtraction, in the form of 3a5b ⇝ 2max(0,a−b) The
following program works:

F = (1/15, 2/3, 1/5)
This time, the order of the fractions does matter. E.g., for a ≥ b we have

3a5b ⇝ 3a−b50 ⇝ 2a−b

Example 3: We want to compute multipication, in the form of 3a5b ⇝ 2a·b. The following
program works:

F =
(182

55 ,
11
13 ,

1
11 ,

5
7 ,

11
3 ,

1
5

)
Note the use of extra prime factors in this case. Here is the computation of 5 × 3 = 15. In
the figure, the rows correspond to the primes used in the program, here 2, 3, 5, 7, 11 and 13,
from top to bottom. Time flows from left to right. Instead of writing down the exponent of
the prime decomposition of the current value of x, we use colors (trust me, nobody wants to
read tables of boring numbers). The redder the color, the larger the number.

Example 4: We want to compute quotient and remainder simultaneously, so we adjust our
I/O convention to

3a5b11⇝ 2 a div b 7 a mod b

The following program works:

F =
(91

165 ,
11
13 ,

1
55 ,

34
11 ,

95
119 ,

17
19 ,

11
17 ,

1
5

)
Here is a picture of the computation for a = 7 and b = 3, producing 2271:

2

With a bit of effort one can actually figure out the numbers hiding behind the colors.

Example 5:
Here is a rather more sophisticated and exceedingly opaque program due to Conway (you
thought the obfuscated C code competition was bad?):(17

91 ,
78
85 ,

19
51 ,

23
38 ,

29
33 ,

77
29 ,

95
23 ,

77
19 ,

1
17 ,

11
13 ,

13
11 ,

15
2 ,

1
7 ,

55
1

)
Note the last term: this program will not terminate, it produces an infinite sequence of inter-
mediate values F t(x) that we interpret as its output (actually, we will filter out the values we
really care about; see below). Here is the behavior on input x = 2:

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132,

116, 308, 364, 68, 4, 30, 225, 12375, 10875, 28875, 25375, 67375, 79625,

14875, 13650, 2550, 2340, 1980, 1740, 4620, 4060, 10780, 12740, 2380,

2184, 408, 152, 92, 380, 230, 950, 575, 2375, 9625, 11375, 2125, 1950,

1650, 1450, 3850, 4550, 850, 780, 660, 580, 1540, 1820, 340, 312, 264, . . .

Looks like so much gibberish. A plot for these values during the first 500 steps of the program
run is no more illuminating.

100 200 300 400 500

1×107

2×107

3×107

4×107

5×107

6×107

7×107

This looks rather chaotic and, frankly, incomprehensible, until one remembers our original
output convention: we should be looking for powers of 2. As soon as we filter out these, the
fog lifts:

21, 22, 23, 25, 27, 211, . . . , 215485863, . . .

3

Conways program enumerates the prime numbers—except for a little glitch at 22. Quite amaz-
ing. The glitch could be fixed, but it would ruin the beautiful simplicity of our program.

2 Universality of FRC

With a little more effort one can convince oneself that FRC-programs can handle arithmetic,
and control flow. So it may not be a total surprise that one can estable the following theorem.

Theorem 2.1 Every partial computable function can be computed by a FRC program.

Thus, FRC-computability is equivalent to any other model of computation that you will en-
counter later (Turing machines, register machines, the λ-calculus, and so on).
At any rate, To prove this theorem, we have to do two things:

• pick any of the standard models of computation, and

• show that the model can be “simulated” by a FRC program.

Needless to say, it is critical to pick a convenient reference model: the standard models that
you will encounter in 15-251 (Turing machines [3], Herbrand-Gödel or the λ-calculus) do not
work very well for this particular argument. A better starting point is a model that looks a
bit more like a digital computer (well, more than all the other models). A register machine [2]
consists of a number of registers, each holding a natural number, and has only three kinds of
instructions (actually, 2.5).

• inc r k increment register Rr, goto k.

• dec r k l if Rr > 0, decrement register Rr and goto k, otherwise goto l.

• halt well . . .

That’s it. A register machine program is a sequence of instructions P = I0, I1, . . . , In−1 and is
executed in the obvious way. We can choose particular registers for input and output.

For example, the following program performs addition:

// addition R0 R1 --> R2
0: dec 0 1 2
1: inc 2 0
2: dec 1 3 4
3: inc 2 2
4: halt

4

This may seem rather primitive, but one can show without too much pain that RMs can
simulate Turing machines, using the standard coding mumbo-jumbo. So, it suffices to simulate
RMs via FRC-programs. This is still mildly tedious, but not hopeless, see the exercises.

Conway’s theorem is surprising since the integers tend to become computationally difficult
only when one deals with addition and multiplication at the same time. One can show that
addition-only (Presburger arithmetic) and multiplication-only (Skolem arithmetic) are both
computationally simple. Surprisingly, Conway’s result does not use addition; multiplication
alone here already makes a mess (this is a white lie, why?).

In general, trouble starts as soon as both operations together are available. The classical result
here is a famous theorem.

Theorem 2.2 (Davis, Putnam, Robinson, Matiyasevic) It is undecidable whether a poly-
nomial equation with integer coefficients

P (x1, x2, . . . , xn) = 0

has a solution in the integers.

The solution must be integral, not real or complex (somewhat counterintuitively, these are
much easier to handle). Hilbert posed this problem in 1900, it took 70 years to prove the
theorem.

3 Exercises

Exercise 3.1 Determine how the division FRC-program works and prove that it is correct.

Exercise 3.2 Determine the running time of the quotient/remainder program.

Exercise 3.3 Produce FRC programs for other arithmetic functions such as factorial and ex-
ponential.

Exercise 3.4 Try to prove that Conway’s prime-generating program is correct.

Exercise 3.5 Figure out how to implement register machine instructions in a FRC-program.
Then combine them to get a FRC program that simulates a given register machine.

References

[1] J. H. Conway. FRACTRAN: a simple universal programming language for arithmetic.
In J. C. Lagarias, editor, The ultimate challenge. The 3x + 1 problem, pages 249–264.
Providence, RI: American Mathematical Society (AMS), 2010.

5

[2] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. JACM, 10:217–
255, 1963.

[3] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
P. Lond. Math. Soc., 42:230–65, 1936.

6

	Programming with Fractions
	Universality of FRC
	Exercises

