
Discrete Math Primer CONTENTS

Contents

Logic 2
Connectives . 2
Propositional Formulae . 2
Truth Tables . 2
Tautologies . 2
Equivalence . 3

Laws of Propositional Logic . 3
Simplification . 4

NAND connective . 4
Negation, Disjunctive, Conjunctive Normal Form . 4
Large Formulae . 5

Counting Functions . 6

Sets 7
Set Formation and Extensionality . 7
Set operations . 7
Numbers and Lists as Sets . 8

Infinity . 9
Pairing . 9

Limitations of Sets . 9
Russell’s Paradox . 9

Functions 10
Domains, Codomains, Graphs . 10
Composition . 10
Classification . 10
Iteration . 11
Transients and Periods . 11
Cellular Automata . 12

code example . 12

1

Discrete Math Primer LOGIC

Logic

Connectives

• negation (¬A) - logical not

• conjuction (A ∧ B) - logical and

• disjunction (A ∨ B) - logical or

• exclusive or (A ⊕ B) - xor

• implication (A ⇒ B) - if A is true then B, the conclusion is true

• biimplication (A ⇔ B) - if and only if A is true then B is true

the above are also ordered by priority of ”connection” ieA∨B∧C∨D is to be read as (A∨(B∧C)∨D),
since ∧ has greater binding priority than ∨

implication associates to the right, so A⇒ (B ⇒ C) is the same as A⇒ B ⇒ C

Propositional Formulae

• > (true) and ⊥ (false) are formulae

• Every propositional variable is a formula

• if A and B are two formulae, then A connective B is also a formulae

uppercase letters like A, B, C are used to denote formulae

lowercase letters like p, q, x, y are used to denote propositional variables

Truth Tables

• sigma (σ) is used for truth assignments

• σ(>) is True, T , 1; σ(⊥) is False, F , 0

• there’s the usual not, true, or, xor stuff

• σ(A⇒ B) = F only when σ(A) = T and σ(B) = F , otherwise σ(A⇒ B) = T

• σ(A⇔ B) = T only when σ(A) = σ(B), otherwise σ(A⇔ B) = F

the only way that an implication can fail is for the premise to be true, but for the conclusion to be
false (A⇒ B ≡ ¬A ∨B)

for n variables there are 2n possible combinations of truth values

Tautologies

Formula that are always true no matter what truth assignments their variables have are called
tautologies or valid formulae

2

Discrete Math Primer LOGIC

Examples

• A ∨ ¬A

• A⇒ A

• A ∧B ⇒ A ∨ C

• ((A ∧B ⇒ C) ∧ (A⇒ B))⇒ (A⇒ C)

By contrast, a formula such as A ∧ ¬A that is always false is called a contradiction

A formula A is said to be satisfiable or a contingency if there is at least one truth assignment
σ such that σ(A) = T

A is satisfiable if, and only if, ¬A fails to be a tautology

Equivalence

two formulae A and B are equivalent (A ≡ B) if for any combination of truth values of the
variables in A and B, the truth value of A is the same as the truth value of B: σ(A) = σ(B) for
all truth assignments σ

any implication A⇒ B can be associated with three others by interchanging and/or negating the
premise and conclusion:

1. Converse: B ⇒ A

2. Inverse: ¬A⇒ ¬B

3. Contrapositive: ¬B ⇒ ¬A

any implication is equivalent to its contrapositive

Laws of Propositional Logic

important examples of equivalences before propositional formulae

• Assosiativity

A ∨ (B ∨ C) ≡ (A ∨B) ∨ C and A ∧ (B ∧ C) ≡ (A ∧B) ∧ C.

• Commutativity

A ∨B ≡ B ∨A and A ∧B ≡ B ∧A.

• Distributivity

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) and A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

• De Morgan

¬(A ∧B) ≡ ¬A ∨ ¬B and ¬(A ∨B) ≡ ¬A ∧ ¬B.

• Identity

A ∨ ⊥ ≡ A and A ∧ > ≡ A.

• Idempotence

A ∨A ≡ A and A ∧A ≡ A.

• Absorption A ∨ (A ∧B) ≡ A and A ∧ (A ∨B) ≡ A.

3

Discrete Math Primer LOGIC

Examples

• A⇒ B ≡ ¬A ∨B

• A ∧B ≡ ¬(¬A ∨ ¬B)

• A⊕B ≡ (A ∧ ¬B) ∨ (¬A ∧B)

• A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

Simplification

If some complicated formula A has a subformula B, and we know that B ≡ B′, then we can replace
B by B′ without affecting truth values: the new formula A′ will always be equivalent to A – and
may well be smaller or easier to read

a connective ∗ is associative if the formula p ∗ (q ∗ r) ≡ (p ∗ q) ∗ r ⊕, ∧, ∨, and ⇔ are associative
connectives.

NAND connective

NAND truth table: TTTF

NAND, p ↑ q, is functionally complete which means that any Boolean expression can be re-expressed
by an equivalent expression utilizing only NAND operations.

> p ↑ (p ↑ p)
⊥ (p ↑ (p ↑ p)) ↑ (p ↑ (p ↑ p))
¬p p ↑ p
p ∧ q (p ↑ q) ↑ (p ↑ q)
p ∨ q (p ↑ p) ↑ (q ↑ q)
p⇒ q p ↑ (q ↑ q)
p⇔ q (p ↑ q) ↑ ((p ↑ p) ↑ (q ↑ q))

Negation, Disjunctive, Conjunctive Normal Form

Normal Form

normal form requires that a formula is written using only negations, disjunctions, and con-
junctions. The first step in rewriting these formulas is to make sure that negations occur only
immediately next to propositional variables (¬p or p, but not ¬(p ∧ q))

Negation Normal Form (NNF)

A formula is in negation normal form, or NNF, if it only contains negations in the form
of literals. To bring a formula into NNF,first eliminate all connectives other than conjunctions,
disjunctions and negations, then use the rewrite rules:

¬(A ∧B) 7→ ¬A ∨ ¬B

¬(A ∨B) 7→ ¬A ∧ ¬B

¬¬A 7→ A

4

Discrete Math Primer LOGIC

Disjunctive Normal Form (DNF)

DNF is a ”sum of products”, (disjunction of conjuctions (of literals)) in the form:

(x11 ∧ x12 ∧ . . . ∧ x1n1) ∨ (x21 ∧ . . . ∧ x2n2) ∨ . . . ∨ (xm1 ∧ . . . ∧ xmnm)

where each xij is a literal indexed by i and j

NNF to DNF rewrite rules:

A ∧ (B1 ∨B2) 7→ (A ∧B1) ∨ (A ∧B2)

(B1 ∨B2) ∧A 7→ (B1 ∧A) ∨ (B2 ∧A)

the DNF of p⇔ q is easily seen to be (p ∧ q) ∨ (¬p ∧ ¬q).

Conjunctive Normal Form (CNF)

CNF is a “product of sums” (conjuctions of disjunctions) in the form:

(x11 ∨ x12 ∨ . . . ∨ x1n1) ∧ (x21 ∨ . . . ∨ x2n2) ∧ . . . ∧ (xm1 ∨ . . . ∨ xmnm)

NNF to CNF rewrite rules:

A ∨ (B1 ∧B2) 7→ (A ∨B1) ∧ (A ∨B2)

(B1 ∧B2) ∨A 7→ (B1 ∨A) ∧ (B2 ∨A)

p⇔ q is easily seen to be (¬p ∨ q) ∧ (p ∨ ¬q)

Large Formulae

small formulae example: the modus ponenes

P implies Q. P is true. Therefore Q must also be true.

p ∧ (p⇒ q)⇒ q

repeated sum:
∑k

n=1 an
repeated product:

∏k
n=1 an

repeated disjunction:
∧k

n=1An

repeated conjunction:
∨k

n=1An

a CNF formula:
∧

i

∨
j `ij

a DNF formula:
∨

i

∧
j `ij

de Morgan’s law for any number of terms: ¬
∨

iAi ≡
∧

i ¬Ai

5

Discrete Math Primer LOGIC

Counting Functions

let EOk be a formula with k propositional variables that is true if, and only if, exactly one of the
variables is true. The general case looks like:

EOk(x1, . . . , xk) =
k∨

i=1

xi ∧
∧

1≤i<j≤k
¬(xi ∧ xj)

The disjunction forces at least one variable to be true and the conjunction ensures that for each
pair of two variables at least one must be false

let ETk be a formula with k propositional variables that expresses “exactly two of the variables are
true”

ETk(x1, . . . , xk) =
∨
i<j

(xi ∧ xj) ∧
∧

i<j<`

¬(xi ∧ xj ∧ x`)

the disjunction says ”at least two” and the conjunction says ”not three or more”

6

Discrete Math Primer SETS

Sets

Set Formation and Extensionality

{1, 2, 3} a set composed of the numbers 1,2,3
x ∈ S x is in the set S
x /∈ S x is not in the set S

{1, 2, . . . , 99, 100} the set of numbers containing exactly the integers from 1 to 100
∅ or {} an empty set

S = {x|P (x)} let S be the set of all x with property P
S = {x ∈ A|P (x)} let S be the set of all x in set A with property P

B ⊆ A set B is a subset of set A

in sets there is no order and no multiplicity, so {a, b, c} = {b, a, a, c, a, c, b}. these sets have the
same cardinality, or the same number of elements

Principle of extensionality: two sets are equal if, and only if, they have the same elements

Principle of set Comprehension (or Set Formation): one can always form sets by taking
items from a different set (see below)

N = {0, 1, 2, ...} natural numbers
Z = {±n | n ∈ N} integers
Q = {a/b | a, b ∈ Z, b 6= 0} rationals
R reals

when you use set formation, like B = {x ∈ A|P (X)}, all of B’s elements belong to A, so B is a
subset of A

any set B is a subset of A (B ⊆ A) if, ∀ x, x ∈ B ⇒ x ∈ A

A = B ⇔ A ⊆ B ∧B ⊆ A

for any set A, ∅ ⊆ A and A ⊆ A

transitivity of the subset relation: A ⊆ B and B ⊆ C implies that A ⊆ C

Set operations

union A ∪B = {x | x ∈ A ∨ x ∈ B}
intersection A ∩B = {x | x ∈ A ∧ x ∈ B}
difference A \B = {x | x ∈ A ∧ x /∈ B}
symmetric diff. A∆B = {x | x ∈ A⊕ x ∈ B}

union: combine the two sets
intersection: what do both sets have in common?
difference: A \B = A− (A ∩B); produces the elements that are only in A, not in B
symmetric difference: A∆B = (A ∪B)− (A ∩B) = (A \B) ∪ (B \A); produces the elements that
are only in A and B, but not both

• Associativity

A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C

7

Discrete Math Primer SETS

• Commutativity

A ∪B = B ∪A and A ∩B = B ∩A
• Distributivity

A ∪ (B ∩ C) = (A ∩B) ∪ (A ∩ C) and A ∩ (B ∪ C) = (A ∪B) ∩ (A ∪ C)

• Idempotence

A ∪A = A and A ∩A = A

• Absorption

A ∪ (A ∩B) = A and A ∩ (A ∪B) = A

complement: the complement of set A is often written as A. In general we fix some universe U
and consider only A ⊆ U

Ā = U−A

Assume A,B ⊆ U for some fixed universe U:

• Identity

A ∪ ∅ = A and A ∩ U = A.

• Domination

A ∪ U = U and A ∩ ∅ = ∅.
• Complements

A ∪A = U and A ∩A = ∅.
• Double Complement (involution)

A = A.

• De Morgan’s Laws

A ∪B = A ∩B and A ∩B = A ∪B.

Numbers and Lists as Sets

von Neumann numbers

You can represent the natural numbers as sets. To represent the first n natural numbers, you could
use:

N0 ∅
Nn S(S(. . . S(∅) . . .))

Nn grows at the rate 2n, so N3 has 23, 8 nodes in it

First 4 Nn’s obtained in this fashion:

N0 {}
N1 {{}}

N2 {{}, {{}}}
N3 {{}, {{}}, {{}, {{}}}}

These are called von Neumann numbers

8

Discrete Math Primer SETS

Infinity

ω = {Nn | n ≥ 0} can be considered as a number representing infinity. The next infinite number,
S(ω) = ω ∪ {ω}, is written ω + 1

We can get to ω+ω and add two infinite numbers in a meaningful way (while∞+∞ is nonesense).
This is helpful for analyzing the behavior of functions defined by multiple recursions (like the
Ackermann function)

Pairing

π(x, y) representa a hypothetical pairing operation on sets. Pairing is a method that associates
any two sets with a sing set, so that individual sets can be recovered from that single set (for
something like an ordered pair)

π(u, v) = π(x, y) implies u = x ∧ v = y

π(x, y) = {{x}, {x, y}}

π(x, x) = {{x}} , a set of cardinality 1, regardless of what x is.

The Cartesian product of A and B is defined by

A×B = {(a, b) | a ∈ A, b ∈ B

{1, 2, 3} × {4,�} = {(1,4), (2,4), (3,4), (1,�), (2,�), (3,�)}

the Cartesian product operation is not commutative or associative.

A×B = B ×A⇒ A = B

A× (A×A) = (A×A)×A⇔ A = ∅

A× ∅ = ∅ ×A = ∅ no matter what the set A is

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

Limitations of Sets

Russell’s Paradox

suppose we create the set of all sets which do not contain themselves

S = {x | x /∈ x}

is S an element of itself? if S ∈ S, then it has the property x /∈ x, which means that S /∈ S. If
S /∈ S, then Set Formation would have put S in S (since it has the property x /∈ x, so then S ∈ S...
so we have to abandon the axiom of Formation or Extensionality

9

Discrete Math Primer FUNCTIONS

Functions

Domains, Codomains, Graphs

let A and B be two sets. a function (from A to B) is a set f ⊆ A×B s.t for any a ∈ A ∃ exactly
one b ∈ B s.t (a, b) ∈ f

A is the domain of f and B is its codomain. For (a, b) ∈ f , b is the image of a under f , f(a) = b.
a is a preimage of b. All elements a ∈ A must have exactly one image (b = f(a) ∈ B), but not
every b needs to have a preimage (they could have one, multiple, or none)

f , the set of pairs, is sometimes called the graph of the function.

f : A→ B states that f is a function from A to B

a partial function is a function undefined on some elements of the domain

the image (or range) of the function is the collection of elements of B that do occur as the image
of some point in A

identity function IA : A→ A defined by IA(x) = x. Thus IA returns exactly its input

constant functions Ca : A→ A defined by Ca(x) = a. Thus Ca always returns a no matter what
the input is

f : R→ R
x 7→ x2 + 1

the function above has the domain and codomain R. → indicates the domain and codomain, 7→
indicates what a particular element maps to. this is the function f = {(x, x2 + 1) | x ∈ R}. If the
domain and codomain are left out you can just assume its the reals.

Composition

given two functions f : A 7→ B and g : B 7→ C we can form the composition h : A 7→ C as

h(x) = g(f(x)) or h(x) = g ◦ f

h is a function with domain A and codomain C. this only works when the domain of g is the
codomain of f

composition isn’t usally commutative. the identity function and another function f are commuta-
tive, though, and simply to just f .

IA ◦ f = f ◦ IA = f

composition is associative:
h ◦ (g ◦ f) = (h ◦ g) ◦ f

functions f s.t f ◦ f = f are called idempotent

Classification

a function is surjective or onto if its image and codomain are exactly the same; if for every
possible output there is a corresponding input that will produce this particular output

10

Discrete Math Primer FUNCTIONS

a function is injective or one-to-one if no two distinct elments in the domain have the same
image:

f(a) = f(b)⇔ a = b

with injective, or reversible functions, one can uniquely reconstruct the preimage a s.t f(a) = b
given just the image b

a function is bijective if it is both injective and surjective

functions R 7→ R:
x 7→ x2 not injective, not surjective
x 7→ x3 − x not injective, surjective
x 7→ ex injective, not surjective
x 7→ x3 injective, surjective (bijective)

Iteration

iteration is repeating a (basic) function some number of times and then returning the final out-
put. to do this we need functions that have the same domain and codomain (sometimes called
endofunctions or square functions

the sequence of elements of the domain obtained by iteration is called the trajectory or orbit of
the argument under the function

let the domain and codomain of function f be N, and f(x) = x2. the trajectory of 2 under f is

2, 4, 16, 256, 65536, . . . , 22
n
, . . .

... I’m pretty sure the collatz conjecture is an example of iteration?

Transients and Periods

if the set A is finite, then th etrajectories of any endofunction f : A→ A wrap around in a lasso.
the nonrepeated numbers are the transient, and the repeated sections are called the period

A sequence a0, . . . , an−1 in A is a cycle of f if f(ai) = ai+1 mod n; these points form a loop of length
n. A cycle of n is also called an n-cycle. In the case n = 1, a ∈ A is a fixed point of f if f(a) = a

f t(a) represents applying f exactly t times to a where t ∈ N. f0 = IA and f1 = f . The orbit of a
under f is periodic if for some p > 0 ∃ fp(a) = a (this would create a lasso with just a period, no
transient).

the orbit of a under f is ultimately periodic if for some t ≥ 0 and p > 0 ∃ f t+p(a) = f t(a)

The least t and p s.t f t(x) = f t+p(x) is the transient length and the period length of the orbit
of x

determining transient and periods for larger cycles

Stage One: the algorithm discovers a point on the cycle.

Stage Two: the point on the cycle just discovered is used to determine the period, i.e., the length
of the cycle.

Stage Three: based on knowledge of the period, one determines the transient.

11

Discrete Math Primer FUNCTIONS

Cellular Automata

cellular automata: like conway’s game of life. a local rule is used to determine what the new
state of the center cell should be, and then is updated for all cells with the global rule.

elementary cellular automa: a linear sequence of cells being in a state of 1 or 0

example with local rule: ρ : 2× 2× 2 7→ 2

. . . 0 0 0 1 0 1 1 0 0 0 . . .

rearrange the bits into overlapping blocks of 3 bits each:

. . . , 000, 001, 010, 101, 011, 110, 100, 000, . . .

apply the local rule ρ to all these blocks and get back a new sequence:

. . . ρ(000) ρ(001) ρ(010) ρ(101) ρ(011) ρ(110) ρ(100) ρ(000) . . .

there are 256 possible rules for ECA. ECA 110 is ”capable of universal computation” (so is turing complete?)

cyclic boundary condition: when we deal with finite bit sequences we assume the first cell is
adjacent to the last cell

any injective global map f is automatically also surjective on 2Z

one-point seed configuration: when testing out new global rules, set the sequence a to a single
1 in the middle surrounded by all 0s

code example

a python program to show the output of an ECA rule, configuration, and repeition count as an
image

1 import numpy as np

2 from PIL import Image

3 def cell(eca, conf, count):

4 array=[]

5 rule = bin(eca)[2:]

6 if len(rule) < 8:

7 rule = "0" * (8-len(rule)) + rule

8 array=[[int(i) for i in conf]]

9 for j in range(count):

10 row=[]

11 for i in range(len(conf)):

12 sub=int(conf[i-1] + conf[i] + conf[(i+1) % len(conf)], 2)

13 row.append(int(rule[7-sub]))

14 array.append(row)

15 conf = "".join([str(k) for k in row])

16 Image.fromarray(np.array(array, dtype=bool)).show()

17 return array

12

Discrete Math Primer FUNCTIONS

ECA rule 110 (image created using program above) on a one-point seed configuration

13

