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Abstract

The aim of this doctoral thesis is to study implications of having aparallel-by-default programming language. This includes languagedesign, runtime system, performance and software engineering con-siderations. We hope that the work helps to advance concurrentprogramming in modern programming environments.
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CHAPTER
ONE

Introduction

O
ne of the most fundamental technology shifts in the last few decades is bestcharacterized by “The free lunch is over” [1]. Because it is no longer feasi-ble to improve single CPU performance, hardware vendors started to integratemultiple cores into single chip. This means that programmers need to developconcurrent applications if they want to achieve performance improvements on new hard-ware. Writing concurrent applications is notoriously complicated and error prone, becauseconcurrent tasks must be coordinated to avoid problems like race conditions or deadlocks.Pure functional programming is by nature an excellent fit for concurrent programming.In functional programming there are no side-effects and programs can execute concurrentlyto the extent permitted by data dependencies. Although functional programming can solveevery problem, having explicit state, as provided by imperative languages, allows thedeveloper to express certain problems in a more intuitive and efficient way. In an idealworld we would like to have the concurrent execution benefits of functional programmingto with the expressiveness of an imperative object-oriented language.Sharing state between concurrent tasks immediately raises questions like: ‘In which

order should those accesses occur?’ and ‘How can one coordinate those accesses to
maintain a program invariants?’ The reason why those questions are hard to answer isbecause there are implicit dependencies between code and state. Methods can arbitrarilychange any accessible state without revealing this information to the caller. This meansthat two methods can be dependent on the same state, without the caller knowing aboutit. Because of this lack of information, current programming languages use the orderin which code is written as proxy to express those implicit dependencies. Therefore thecompiler has to follow mostly the given order and cannot exploit potential concurrencyautomatically. When the developer adds concurrency manually, it is easy for her to missimportant dependencies, introducing race conditions and other defects.To overcome this situation, we propose to transform implicit dependencies into explicitdependencies and then infer the ordering constraints automatically. In our proposedsystem, by default, everything is concurrent, unless explicit dependencies imply a specificordering. By using a concurrent by default approach, we eliminate explicit, and notoriouslycomplicated and error prone, reasoning about sequential and parallel ordering. Instead ofspecifying when and where which operations/tasks should be executed, the programmerin our approach specifies which stateful effects 1 each operations performs. The system

1E.g. reading a certain memory region, updating a specific memory region, . . .
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we will use those dependency information to perform the operations in an non-interferingmanner. The system will not only use the dependency information to perform concurrentexecution, but also validate that the dependency information is consistent. We stronglybelieve that this approach will provide a significant improvement over current approachesand will lead to fewer concurrent bugs and more scalable software.We propose to use access permissions [2] to specify explicit dependencies betweenstateful operations. Access permissions are abstract capabilities that grant or prohibitcertain kinds of accesses to specific state. Our approach requires each method to specifypermission to all of the state it potentially accesses. Looked at from a slightly differentperspective, our system ensures that every method only accesses state for which it hasexplicit permissions. The way we use access permissions to specify state dependenciesresembles the way Haskell [3] uses its I/O monad2 to specify access to global state. Butunlike the I/O monad, which provides just one permission to all the state in the sys-tem, access permissions allow greater flexibility by supporting fine-grained specifications,describing the exact state and permitted operations on it.The goal of this dissertation is to show that the concurrent-by-default paradigm is anfeasible and useful approach. Therefore we are going to design an new programming lan-guage, called ÆMINIUM, and runtime system, which takes the concurrent-by-default as oneof its main design principles. Achieving this goal implies language design, developmentof the runtime system, performance evaluations and user studies.

2Think of it as one global permission, which grants the right to access or change all state in the system.
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CHAPTER
TWO

State of the Art

T
his chapter provides an overview of the current state of the art in the area ofconcurrent programming. There are many different and often orthogonal con-cepts and principles in the area of concurrent programming. Since our systemis focused implicit concurrency this dimension is followed when presenting re-lated work. We first present explicit concurrency approaches for concurrent programmingalong with its advantages and disadvantages. Then we present implicit concurrency ap-proaches for concurrent programming, again with its advantages and disadvantage. Giventhe huge amount of sometimes just marginally, different approaches and systems, we arefocusing on general concepts and the most closely related research. Also there is no strictborderline between implicit and explicit concurrency, but we are going to use the followingdefinitions for the definitions:

explicit In an explicit concurrent system, the programmer is actively involved in the cre-ation and management of concurrent execution. This means in particular the pro-grammer writes explicit code1 to create or manage concurrent tasks (e.g creatingthreads, task pools, . . . ) and coordinate synchronisation (e.g. locks, conditionalvariables, . . . ).
implicit An implicit concurrent system distinguishes itself from an explicit concurrent sys-tem, in the fact that it does not require the user to actively write code for concurrentexecution. In an implicit system the semantics of the language or library interfacesimply that certain operations could be performed concurrently.
2.1 Explicit Concurrency
Explicit concurrency is all about the manual management of different threads of execu-tion. The most simple, and most coarse grain, form of explicit concurrency is separate,sequential processes which exchange data via a communication channel. A minimalisticformal description of those communicating sequential processes (CSP) is given by [4] andis commonly know as the Π-calculus. It is the common case for CSP to communicate viamessage passing. In message passing all necessary synchronization is implicitly handledby the message passing abstraction and relieves the programmer from explicit managing

1Often code that uses low-level abstractions of operating or hardware features.
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2.1. EXPLICIT CONCURRENCY
synchronization via low-level primitives. Because processes have strong isolation betweeneach other, data needs to be copied from one process to another process. This leads tothe fact that message passing systems are in general free of race-conditions, but also con-tributes to its inefficiency in the case of huge amounts of data. In general the support forspawning new processes is not directly included in mainstream programming languagesand is rather provided via libraries. Those libraries range from simple wrappers, that callstraight into the operating system (e.g. fork), to highly-sophisticated libraries that supportcomplex communication operations and extend infra-structure management support (e.g.MPI).The Message Passing Interface (MPI) [5, 6] is one example for such an sophisticatedlibrary. MPI is the established de facto standard for developing high performance dis-tributed memory application. MPI implementations provide besides library itself, severaltools for starting and managing multiple processes job. The latest MPI standard [6] alsoadded the support for dynamically creating processes. The MPI standard defines a richset of communication abstractions, ranging from synchronous and asynchronous point-to-point operations to complex collective operations (e.g. a collective reduce operation witha user-defined data types and operator functions).Erlang [7] is one of the few programming languages that has built-in support forprocess creation and communication channel between processes. Erlang processes do notmap directly to operating system processes at language level. But Erlang provides astrong isolation guaranty between processes and a high-level communication abstraction,which allows processes to run either on the same virtual machine or on different virtualmachines on different nodes. Therefore we consider Erlang a member of the CSP familyand inherits all the corresponding features and shortcomings.

Threads are concurrent entities inside a process that shared the address space withtheir host process. Therefore, threads allow fast and easy shared memory communica-tion. Instead of sending data between processes, and eventually duplicating shared data,data can be uniformly accessed by all threads in the system. One side-effect is thatall accesses to shared data need to be coordinated to avoid race-conditions. Similar toprocess management, many older programming languages (like for instance C, C++2, . . . )support threads via external libraries, providing simple wrappers around operating sys-tem functionality. As shown in [8], if threads are not part of the programming languagethe, compiler can generate wrong code while optimizing the program. Therefore manymodern programming languages support threads at a language level and provide explicitdescriptions of the used memory model [9].
Mutexes and semaphores are the most commonly used and supported synchronizationprimitives when it comes to protecting access to shared resources. The usage of thoselow-level primitives is notoriously complicated and error-prone. Several different staticverification mechanism have been proposed to verify the correct usage of those lockingprimitives. We present two example systems which relate closest to our research. Terauchi[10] describes a type-system for generating a linear-system based on its input program.The linear-system is constructed in a way that if and only if the linear system is solvablethen the corresponding program is guaranteed to be free of race-conditions. In [11] a con-current extension of typestate [12] is described to detect race-conditions. While protected

2For the upcoming C++0X standard, a thread and memory model is currently under development :
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
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2.1. EXPLICIT CONCURRENCY
through the correct lock3 the system will follow the normal typestate protocol and as soonas the lock is released all typestate information is immediately forgotten. Therefore if thecritical zone is not wide enough to protect all critical accesses, the system will not be ableto establish the typestate conditions and will trigger an error. All those systems eitherrequires a whole program analysis or extensive annotations, and therefore have limitationswith regard to practical usage.

Transaction Memory (TM) [13], which avoids the explicit reasoning about which lockprotects which shared state, became a very active research area during the past fewyears. In TM the programmer indicates, by using an atomic-block, which code shouldrun as if it would be one atomic-instruction. Like an atomic instruction, either the wholeexecution successfully completes and the rest of the system can see the changes or nochanges are performed at all. The underlying runtime-system will automatically take careof protecting access to shared resources, detection of possible conflicts and automatic doconflict resolution. We consider TM more an implicit than an explicit concurrency controlmechanism because, the programmer does not specify which lock protects which data, herather declares which piece of code should requires to be run under atomic conditions.
Cilk [14] is a programming language which includes higher-level, but still explicit, con-currency abstractions. Cilk extends the C programming language with three new keywords:

cilk (to mark spawn-able functions), spawn (to spawn function calls asynchronously) and
sync (to wait for completion of previously started asynchronous functions). Figure 2-1shows a simple Cilk program for concurrently computing a Fibonacci number. Also Cilksimplifies the management of concurrent tasks, it still relies on the programmer to explic-itly specify where and how to extract concurrency and to correctly synchronize access toshared resources. Cheng [15] describes a mechanism to check for race-freedom when locksare used for protecting access to shared resources. The proposed approach is not a gen-eral verification, but rather debugging tool for checking the absence of race-conditions forone specific input by sequentiallizing the execution of Cilk program. Besides language-based, higher-level abstractions, one of the major contributions of Cilk is its very efficientruntime-system [16], which employs a work-stealing approach for load-balancing.

Kilim [17] is an actor-based programming language for shared memory systems. InKilim actors run concurrently inside the same process and communicate via message pass-ing. Similar to Microsoft Singularity operating system [18], Kilim uses statically verifiedownership transfer between actors to avoid expensive data copy operations. ThereforeKilim merges the implicit synchronization of message passing with the performance asso-ciated to shared memory communication. But the programmer is still in charge of specifyingthe concurrency and need to map the concrete problem to the actor model.
Axum4 [19], similar to Kilim, is a actor based programming language. But unlikeKilim, which mainly support mail boxes as communication primitive, Axum provides anextensive set of operators to build dataflow-graphs. To achieve strong isolation betweenactors, all data that is send must be serialized before the send operation and de-serializedafter its reception. Axum supports the specification of communication protocols for specificchannels, which allows the detection of certain deadlock scenarios by detecting a protocolviolation. To avoid the expensive data copy operations that are involved in the messagepassing, Axum supports shared state via ’domains’. Domains are groups of data/objectsthat are shared between several actors. Each actor has to specify if is just reading or

3If the correct lock is not manually specified by the user the system employs heuristics to guess thecorrect lock automatically4Formerly known as Maestro.
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2.1. EXPLICIT CONCURRENCY
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <cilk.h>
4

5 cilk int fib (int n)
6 {
7 if (n<2) {
8 return n;
9 } else {
10 int x, y;
11 x = spawn fib (n−1);
12 y = spawn fib (n−2);
13 sync;
14 return (x+y);
15 }
16 }
17

18 cilk int main (int argc, char ∗argv ])
19 {
20 int result;
21 result = spawn fib(atoi(argv[1]));
22 sync;
23 printf ("Result:%d\n", result);
24 return 0;
25 }

FIGURE 2-1: A Cilk example program to concurrently compute the Fibonacci number. The
main and all spawn-able functions must be marked with the cilk specifier. In line 21an asynchronous computation is started, indicated by the spwan keyword. With the synckeyword the program waits for the completion of this task. While asynchronous executingthe fib function, it recursively spawns off new asynch. tasks (line 11 and 12), and waitsin the following line via the sync keyword for their completion.
also writing to the mutable state of the corresponding domain. This allows the system toorder accesses to mutable state and avoid race conditions. This approach can be seen asa very simple form of access permissions to domains (to be discussed later).

Dryad [20] is a runtime-system for execution of dataflow graphs. Dryad allows theexecution of programs on platforms ranging from multi-core CPUs to big computer clusters.Dryad is mainly used as backend execution engine for high-level concurrent programminglanguages. For instance DryadLINQ [21], a LINQ5 implementation, and SCOPE [22],a high-level data processing langauges, use Dryad as (one of) their backend executionengines.
X10 [23] is an new programming language that has been developed in a DARPA-fundedsupercomputing initiative. It aims at the creation of a next generation programming lan-guage for high-performance computing. One of the major design-goals of X10 was thesupport for distributed computing. X10 uses a global partitioned address space, where the

5Discussed in section 2.1.
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2.2. IMPLICIT CONCURRENCY
distinct partitions are called places, to take the Non-Uniform Memory Access (NUMA)of current systems into account. X10 allows the programmer to start asynchronous activ-ities in other places to modify or fetch data from places. Asynchronous activities can becoordinated via barrier-like objects, called clocks, which allow the execution of activitiesbased on phases. X10 also provides an atomic-block for protecting the access to sharedresources.

Access Permissions are a novel abstraction mechanism, originally introduced by Bier-hoff [2] to solve the alias problem in typestate verification. Access permissions encode theinformation regarding how the referenced object can by used through the current referenceas well as through possible other reference in the system. Beckman [24] shows how to useaccess permission to enforce the correct usage of atomic blocks, by requiring all accessesthrough shared and full references must occur inside an atomic context.
2.2 Implicit Concurrency
One of the main concepts of implicit concurrency systems is their declarative nature.Instead of specifying how to do something, the programmer rather specifies what shouldbe done and let the system decide how to do it. Therefore implicit concurrency systemsrelieve the programmer from the complex specification of and reasoning about concurrentexecution.

Pure functional programming [3] provides a good match for implicit concurrency. Thelack of side-effects and the explicit dependencies inside the code allow the runtime-system/compiler to extract high-levels of concurrency. As previously mentioned, purefunctional programming is not suitable for all cases (e.g. high productivity and easy ofuse). Therefore functional programming languages increase their features by allowingmutable state and side-effects. When it comes to mutual state and side-effect, Haskell[3] has one of the most interesting approaches in dealing with those. In Haskell all side-effects, namely the change of mutable state, must explicit be mentioned in the functionsignature. For instance, a function that needs to perform I/O must declare that it requiresan I/O monad. The I/O monad is a permission to change the ’world’ and everything init. The flow of the I/O monad is used by Haskell to sequentialize the execution of allmethods that change mutable state and therefore avoid race-conditions. Having just onepermission for the whole system is rather limiting and leads to a major bottleneck inhighly-concurrent systems.HPF [25], Nesl [26, 27] and ZPL [28] are examples of data-parallel programming lan-guages. In these languages the programmer works mainly with arrays and the applicationof functions to the all or just part of the array elements. Those programming languagesnaturally fit to scientific computing, which mainly involves computation on huge data-sets.General purpose programs, like for instance web a server , are hard to realize in suchprogramming languages.
OpenMP [29, 30] is an industry standard for shared memory programming in C and For-tran. OpenMP specifies transparent annotations that allow the compiler to automaticallyparallelize program. OpenMP supports parallelization of non-regular code via parallelsections and tasks, but the main focus of OpenMP is the parallelization of regular prob-lems that are expressed via loops. The goal of OpenMP annotations is not to tell thecompiler how to parallelize the code, but rather to point the compiler to the code-fragmentsthat make most sense and is legal to parallelize. Having said that, the programmer still

7



2.2. IMPLICIT CONCURRENCY
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4

5 static void matrix_mult(double ∗A, double ∗B, double ∗C, int size)
6 {
7 #pragma omp parallel for
8 for ( int i = 0; i < size; i++ ) {
9 for ( int k = 0 ; k < size ; k++ ) {
10 for ( int j = 0; j < size ; j++ ) {
11 C[i+j∗size] += A[i+k∗size] + B[k+j∗size];
12 }
13 }
14 }
15 }
16

17 int main(int argc, char ∗argv[])
18 {
19 int size = 0;
20 double ∗A = NULL, ∗B = NULL, ∗C = NULL;
21

22 size = atoi(argv[1]);
23

24 A = (double∗)malloc(size∗size∗sizeof(double));
25 B = (double∗)malloc(size∗size∗sizeof(double));
26 C = (double∗)malloc(size∗size∗sizeof(double));
27

28 ...
29

30 matrix_mult(A, B, C, size);
31

32 free(A);free(B);free(C);
33 return 0;
34 }

FIGURE 2-2: A OpenMP example program that performs a parallel matrix multiplication.After allocating memory and initializing the matrices (line 28, code omitted for brevity)the program calls the matrix_mult function to perform the matrix multiplication. The
matrix_mult implements a standard matrix multiplication algorithm, consisting of threenested loops. The pragma in line 7 tells an OpenMP capable compiler, that the following(the most outer) for-loop should be automatically parallelized.
has a fair amount of liberty on controlling how it’s done. In Figure 2-2 a simple OpenMPprogram for the concurrent computation of a matrix-multiplication is shown. Similar todata-parallel programming languages, OpenMP is a natural fit for scientific computingbut has several short-comings when it comes general purpose programming (e.g. limitedsupport for expressing parallelism in irregular structures). Intel developed an OpenMPversion for parallelizing programs across multiple machines called Cluster OpenMP [31].

8



2.2. IMPLICIT CONCURRENCY
1 using System.Collections.Generic;
2 using System.Linq;
3

4 class Person {
5 public int id;
6 public string name;
7 public int age;
8

9 public override string ToString() {
10 return "[" + id + "]−>" + name + "(" + age + ")";
11 }
12 };
13

14 public class Simple
15 {
16 public static int Main(string[] args) {
17

18 var objs = new List<Person> {
19 new Person {id=1, name="Hans", age=12},
20 new Person {id=2, name="Willi", age=45},
21 new Person {id=3, name="Gustav", age=34},
22 new Person {id=6, name="Hans", age=67},
23 new Person {id=11, name="Willi", age=100},
24 };
25

26 var result = from o in objs.AsParallel()
27 where o.name == args[0] && o.age >= 21
28 orderby o.age ascending
29 select new {o.name, o.age};
30

31 foreach(var o in result) {
32 System.Console.WriteLine(o);
33 }
34 return 0;
35 }
36 };

FIGURE 2-3: A simple PLINQ program for find all persons of the given name that are over21. Note that the only difference to a normal (sequential) LINQ programs is in line 26,where the program uses the AsParallel method to retrieve a parallel collection.
Given the higher overhead of the underlying distributed shared memory (DSM) model,this approach seems rather inefficient for most cases.

Language Integrated Query (LINQ) [32] is an extension to the C# programming lan-guage, which allows Structured Query Language (SQL) [33] like operations on data objects.Any object that implements IEnumerable<T> can the used as source in an LINQ query.This allows LINQ to expression work with a variety of data objects, ranging from simplearrays, over complex collection objects to objects that represent remote databases. The
9



2.2. IMPLICIT CONCURRENCY
high-level declarative nature SQL is used inside databases for various optimizations, in-cluding parallel execution. With Parallel LINQ (PLINQ) [34] the same idea is transformedto LINQ. The PLINQ extension allows queries to be executed in parallel, as long as thereare no data dependencies between the different computations. Figure 2-3 shows a simpleexample for concurrently filtering a list of persons that match certain criteria. It is worthto mention that most of (P)LINQ is implemented as library. The main languages changesfor supporting (P)LINQ have been the introduction of lambda functions and some syntheticsugar to write the queries in a more SQL style way.

Fortess [35] is one of the most closely related projects to our approach. Fortress hasbeen funded by DARPA for high-performance computing. The syntax of Fortress closelyresembles Java’s syntax, Fortress employs a significantly different evaluation semantics.In Fortress many evaluation contexts, like for instance tuples and for-loops, execute con-currently by default. In the possible case of data-races, the programmer either has toforce a sequential execution or protect critical accesses with an atomic-block. Fortressdoes not support any mechanism to detect possible data-races. It is the responsibility ofthe programmer to localize potential data-races and take appropriate counter actions. Avery useful feature of Fortress is the usage of UNICODE symbols (e.g the sum or integralsymbol), to render formulas and program code in ’pseudo-code’ style format. This featureexplicitly targets the target user groups of scientist, which have a solid understanding oftheir domain, but might have limited programming skills.Several Automatic Parallelization approaches and techniques for compilers have beenproposed. In general these approaches focus on instruction level parallelism (ILP) by ex-ploiting special vector units or improving pipeline utilization. Nowadays all mainstreamcompilers [36, 37, 38, 39] support ILP at different levels. While this approaches improvesingle threaded performance, they do not parallelize the program across multiple CPUcores. Therefore more coarse grain approaches for the automatically parallelization ofprograms have been investigated. Hall et al. [40] describe SUIF, an automatically par-allelizing compiler for coarse grain parallelism. SUIF uses a scalar, an array and aninter-procedural analysis to automatically parallelize loops. A similar approach is usedby T-Systems Cell-Compiler [41]. The T-System Cell-Compiler automatically extract par-allelism at loop level to execute on a Cell processor [42]. Because both approaches relyon highly regular problem, they are a good fit scientific computing but have limited ap-plicability for irregular, general purpose programs.

10



CHAPTER
THREE

RESEARCH OBJECTIVES AND APPROACH

T
his chapter discusses the overall objectives and approach of our system. Firstelaborate the placed objectives, describing which features and attributes weexpect to hold in our system. Then we discuss in detail how we expect torealize those attributes in our system.

3.1 OBJECTIVES
With our ÆMINIUM language we intend to show the implications of a ‘concurrent by default’programming language. In particular we focus on the following objectives:
Impact We want to evaluate the impact of an concurrent by default programming language.In particular we want evaluate if such an programming language can be used asa general purpose programming language. Additionally we want to evaluate if aconcurrent by default programming language provides better support to programmerswriting concurrent application than current major programming languages.
Runtime Another objective is the evaluation of implications for the runtime system of aparallel by default programming language. In particular we expect the questions ofgranularity and implementation techniques will be one of the major challenges forthe runtime system.
Scalability The question if our system is capable of scaling to dozens or hundreds ofcore depends mainly on the implementation of the runtime system. But the bestruntime system in the world cannot scale if there is not enough concurrency available.Therefore the evaluation of available concurrency in code application will be anotherobjective of our work.

Over the past year we have worked on the core principles of the ÆMINIUM language.The next section provides an overview of the approach.
3.2 APPROACH
In ÆMINIUM every method must explicitly mention all of its possible side effects. Thisallows the system to compute the data dependencies within the code, and within those

11



3.2. APPROACH
1 class Collection { ... }
2 class Dependencies { ... }
3 class Statistics { ... }
4

5 Collection createRandomData()
6 : unit Z⇒ unique(result)
7

8 void removeDuplicates(Collection c)
9 : unique(c) Z⇒ unique(c)
10

11 void printCollection(Collection c)
12 : immutable(c) Z⇒ immutable(c)
13

14 Dependencies compDeps(Connection c)
15 : immutable(c) Z⇒ immutable(c),unique(result)
16

17 Statistics compStats(Connection c)
18 : immutable(c) Z⇒ immutable(c),unique(result)
19

20 void main() {
21 Collection c = createRandomData()
22 printCollection(c)
23 Statistics s = compStats(c)
24 Dependencies d = compDeps(c)
25 removeDuplicates(c)
26 printCollection(c)
27 ...
28 } FIGURE 3-1: Example: Unique and Immutable Permissions

constraints, execute the program with the maximum possible concurrency. By followingthis approach our system resembles a dataflow architecture [43]. But, instead of producingand consuming data, our system supports shared objects and in-place updates.To achieve scalability for upcoming massive concurrent systems, we need to use a fine-grained approach for specifying side effects. To avoid overly conservative dependencies,which would limit concurrency, we need a way to deal with object aliasing. In access
permissions [2] we found a uniform solution for both problems, the specification of dataaccesses and the specification of aliasing. The next sections describe the approach inmore detail.
3.2.1 Access Permissions for Concurrency
Unique and Immutable PermissionsConsider the application in Figure 3-1 which computes over a collection of data. Startingwith line 20 the main function creates a collection containing some random generated data.At line 22 we print the collection on the screen, then pass the collection into method calls tocompute statistics and dependencies over the passed collection, and return corresponding

12



3.2. APPROACH
objects describing those. Those objects are later needed by code we omitted (line 27).After that, we remove existing duplicates from the collection and then print the updatedcollection to the screen (line 26).Obviously, for concurrency purposes, functions like removeDuplicates require a per-mission to modify the collection. On the other hand, functions like printCollection,which only examines the collection, only require a read-only permission. To specify ex-actly those requirements access permissions are used.Access permissions are abstract capabilities that grant or prohibit certain kinds ofaccesses to specific state. Access permissions are associated with object references andspecify in which way the owner of the permission is allowed to access/modify the referencedobject. In our system we use the following kinds of access permissions:
Unique A unique permission to a reference guarantees that this reference is the onlyreference to the object at this moment in time. Therefore the owner has exclusiveaccess to the object.
Immutable An immutable permission to a reference provides non-modifying access to thereferenced object. Additionally a immutable permission guarantees that all otherexisting references to the referenced object are also immutable permissions.
Shared A shared permission to a reference provides modifying access to the correspondingobject. Additionally a shared permission indicates that there are potentially othershared permissions (aliases) to the referenced object through which the referencedobject can be modified.
For brevity we write ‘unique reference‘ when we mean ‘a unique permission to a reference‘,as well as for immutable and shared permissions. When specifying permissions in codewe write ’unique(X )’ when we mean that we have a unique permission to reference X. Weuse the pseudo-reference ’result’ to specify a permission to the return value.We use linear logic [44] to manage the access permissions in our system. Lin-ear logic is a sub-structural logic for reasoning about resources. Once resources havebeen consumed they are not longer available. We use the symbol Z⇒ to separate thepre-conditions (the permissions a method requires and consumes) from the post condi-tions (the permissions a method returns). Consider the following method signature :’unique(this) Z⇒ unique(this)’. In this case the method requires that the caller musthave a unique permission to the receiver object to call this method. Because we uselinear logic, the input permission is consumed, and therefore the method has to produce anew unique permission to the receiver object upon its return. If the method did not returna permission to the receiver object, the caller would not be able to access the object anymore.Because access permissions play such an important role in our system, we promotethem to first-class citizens and integrate them into a type system. Consider the followingfunction that converts an Integer into its String representation, indicating the type (in thiscase I for Integer) and the value:

String repr(Integer a){ return "I"+a; }

In a standard ML-style type signature [45], this function would have the type ’Integer
→ String’, stating that the method takes an Object as input and returns an Object. Inour system, the same function would have the following access permission signature:
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3.2. APPROACH

split1

computeStats

 immutable(c)

printCollection

 immutable(c)

computeDeps

 immutable(c)

split2

join2

 immutable(c) printCollection

 immutable(c)

join1

removeDuplicates

 unique(c)

...

 unique(c)

......

 immutable(c)

createRandomData

 unique(c)

 immutable(c)

 unique(s)

 immutable(c)  immutable(c)

 unique(d)

 unique(c)

FIGURE 3-2: Example: Unique and Immutable Permissions Flow
immutable(a) Z⇒ immutable(a), unique(result)

The access permission signature provides much more information regarding the behaviorof the function. First, the immutable permission indicates that the function is not goingto change the object we passed in. Secondly, we know that the reference to the returnedString object is not aliased, because it is the only one in the whole system.With this information we are able to specify the exact permissions of each presentedmethod. As shown in line 5, the createRandomData method requires no permissions (weindicated the empty set of permissions with unit) and produces a unique permission tothe returned collection. Because printCollection1 (line 11), compDeps (line 14) and
compStats (line 14) do not modify the collection, they all just require an immutablepermission to the collection, which is returned again after their completion. Additionally,
compStats and compDeps return a unique permission to their returned objects, which arelater needed, but are not important in the code shown. The removeDuplicates methodrequires, and returns after completion, a unique permission to the collection, as it is goingto modify the collection.

1For accessing the output device our system also requires a permission. To keep the example simpleand because data groups (explained in section 3.2.2) offer a better abstraction for dealing with this kind ofproblems, we omit the I/O-related permissions in this example.
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3.2. APPROACH
Given the permission signatures and using textual order, our system is able to computethe permission flow through the program. Figure 2 shows the permission flow graph forthe program which captures the existing data dependencies.As specified in Figure 3-1, the createRandomData method generates a unique per-mission to the returned collection. The printCollection, compStats and compDepsfunctions require only a immutable permission to the collection. Therefore our system hasto ’convert’ the unique permission into three immutable permissions, one for each function.Like in Bierhoff’s system [2], our system performs those ’conversions’ by automaticallysplitting and joining permissions utilizing fractions [46]. This means that after starting outwith a unique permission, the system is able to split the unique permission into eithermultiple shared permissions or multiple immutable permissions. Remember that becauseof linearity, the unique permission is consumed and is no longer available. The reverseworks in a similar way. Once all shared or immutable permissions have been collected, thesystem is able to form a unique permission again by consuming all fractional permissions.The splitting of the unique permission into three immutable permissions is shownin Figure 3-2 as ’split1’. Once their input requirements are fulfilled via an immutablepermission to the collection, those three methods are eligible for execution. The systemcan decide to execute them concurrently or sequentially, depending on available resourcesand relative execution costs.The removeDuplicates method requires a unique permission to the collection, andtherefore it depends on the completion of the printCollection, compDeps and comp-

Stats methods. Only when those methods complete will they return the immutable per-missions to the collection, which they consumed when starting their execution. The systemneeds to collect all immutable permissions to the collection before it can join them back toa unique permission to the collection (see Figure 3-2, ’join1’). Remember that immutableguarantees that at this point in time there are only immutable permissions referencing theobject. After the unique permission has been recovered, the input requirements for the
removeDuplicates method is fulfilled and it can be executed. The second printCollec-
tion method (line 26) requires an immutable permission. Therefore, this method dependson the completion of the removeDuplicates method, before the system can split the re-turned unique permission to the collection into immutable permissions to the collection(see Figure 3-2, ’split2’). After the completion of the second printCollection methodthe system will automatically recover the unique permission to the collection2 (see Figure3-2, ’join2’).The advantage of this approach over explicit concurrency management is founded in theautomation of dependency inference and the guarantee that those dependencies are met.If the programmer manages concurrency manually he might overlook dependencies andcreate race conditions or might overlook the absence of dependencies and miss availableconcurrency. In particular when it comes to the concurrent sharing of data, reasoningabout dependencies becomes significantly more complicated.
Shared PermissionsIn the previous section we saw how unique and immutable permissions can be used toextract concurrency. However having only unique and immutable is of limited use. Becausethere exists only one unique permission to an object at a time, there can be only oneentity modifying the object at a time. Shared memory and objects are in general used as

2Assuming that the statement that depends next on the collection requires unique permission.
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3.2. APPROACH
1 class Queue {
2 void enqueue (Object o)
3 : unique(this), shared(o) Z⇒ unique(this)
4

5 Object dequeue()
6 : unique(this) Z⇒ unique(this), shared(result)
7 }
8

9 Queue createQueue() : unit Z⇒ unique(result)
10

11 void disposeQueue(Queue q) : unique(q) Z⇒ unit
12

13 void producer(Queue q) : shared(q) Z⇒ shared(q)
14 { atomic { q.enqueue(...) ... } }
15

16 void consumer(Queue q) : shared(q) Z⇒ shared(q)
17 { atomic { Object o = q.deqeueu() ... } }
18

19 void main() {
20 Queue q = createQueue()
21 producer(q)
22 consumer(q)
23 disposeQueue(q)
24 } FIGURE 3-3: Example: Producer/Consumer with Shared Permissions

communication channels between several concurrent entities, which may modify the sharedstate. Therefore, we need a mechanism to allow concurrent execution and modifying accessto a shared resource. A shared permission provides exactly these semantics.As explained before, a shared permission allows modifying access to the referenced ob-ject and indicates that the there are potentially other shared references out there, throughwhich the referenced object could be changed. In our system, similar to immutable per-missions, statements that depend on the same shared object can be executed concurrently.Obviously, allowing concurrent access to the same object opens the window for race con-ditions. Therefore, we require that every access through a shared reference must occurinside an atomic context. We introduce the atomic-block statement into our language,
atomic { ... }, with the common transactional memory [13] semantics. In particular,this means that a block of statements is completely executed, and all modifications becomevisible to the rest of the system atomically. It is important to note that all code insidean atomic context is sequentially executed in the given lexical order. If several differentatomic blocks cause conflicting accesses, the runtime system will detect those and resolvethem (in general by aborting, rolling back and retrying some of the atomic blocks). There-fore, an atomic block provides the illusion of having exclusive access to the all accessedresources. Although the placement of atomic blocks could be inferred automatically, forgranularity reasons, we require the user to explicit specify atomic regions. This approachallows the user to have fine-grain control over the size of critical sections. Our system
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3.2. APPROACH

producer consumer

split

atomic

 shared(q)

atomic

 shared(q)

join

disposeQueue

 unique(q)

createQueue

 unique(q)

 shared(q)  shared(q)

FIGURE 3-4: Example: Producer/Consumer with Shared Permission Flow
can adapt the approach described in [24] to verify and enforce the correct usage of atomicblocks.Figure 3-3 shows a simplified producer/consumer example, where the producer andconsumer communicate via a queue. Beginning in line 19 main calls createQueue toobtain a new queue object. This queue is then passed to the producer and consumermethods (lines 21 + 22). Finally the program calls the disposeQueue method to free thequeue.This program’s permission flow is shown in Figure 3-4. Both the consumer and pro-
ducer methods require a shared permission to the queue. Therefore, the unique permissionreturned by createQueue (line 9) is automatically split by the system into shared per-missions (Figure 3-4, ’split’). This means that both the producer and consumer methodshave their required input permissions and can be executed in parallel. Because the queueis shared, both methods need to be in an atomic context when accessing the queue (lines14 + 17). As shown in line 2 and 5, both the enqueue and dequeue methods require aunique permission to the queue. Because the atomic block provides an illusion of exclu-sive access, we can treat the shared permission to the queue as a unique permission, andpermit the access to the queue. Because disposeQueue requires a unique permission tothe queue, it depends on the eventual completion of producer and consumer to return theshared permissions to the queue and join them back to form a unique permission (Figure3-4, ’join’).
3.2.2 Data Groups for Higher-Level DependenciesIn some situations, application-level dependencies exist that cannot directly inferred viadata dependencies. As an example of high-level dependencies, consider the commonObserver Pattern. It is unclear whether the Observers of a Subject need to be attached
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3.2. APPROACH
1 class Subject {
2 void add(Observer o)
3 : shared(this), shared(o) Z⇒ shared(this)
4

5 void update() : shared(this) Z⇒ shared(this)
6 }
7

8 class Observer {
9 Observer(Subject s)
10 : shared(s) Z⇒ shared(s), shared(result)
11 { s.add(this) }
12

13 void notify(Subject s)
14 : shared(this), shared(s) Z⇒ shared(this), shared(s)
15 }
16

17 void update(Subject s) : shared(s) Z⇒ shared(s)
18 { s.update() }
19

20 void main() {
21 Subject s = new Subject()
22 Observer obs1 = new Observer(s)
23 Observer obs2 = new Observer(s)
24 update(s)
25 update(s)
26 ...
27 } FIGURE 3-5: Example: Concurrent Observer

to the subject before the Subject can be updated. In some situations it is important forobservers not miss the first update (e.g., to initialize the observer correctly), while in othersituations it does not matter if the first update is missed (e.g., a news feed). We proposeto use data groups [47] to allow the specification of such high-level dependencies.Consider the simple observer example shown in Figure 3-5. The program creates a newsubject which is then passed to newly created observers and to several update methodcalls. The observer’s constructor simply adds the current object as subscriber to theprovided subject (line 11). The update call triggers the notification of the subject (line 18).Furthermore, assume we want to extract the maximum parallelism possible by allowing theconcurrent creating/addition of observers and concurrent updates. A first attempt wouldbe to use shared permissions to the subject in the Observer constructor call (line 9) andthe update call (line 18). Using this approach leads to the dependencies shown in Figure3-6. The problem is that, as shown, the construction of the Observer objects and the
update function only have dependencies with the Subject but not amongst each other.Therefore they can be executed concurrently in any order. This could lead to the updatemethod being called before any Observer is attached to the subject. While this behaviormight, in some scenarios, be acceptable (e.g., a small gadget that display the latest news),it can also be unacceptable in other situations (e.g., when the observer depends on the
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new Subject()

split

 unique(s) 

new Observer(s)

 shared(s) 

new Observer(s)

 shared(s) 

update(s)

 shared(s) 

update(s)

 shared(s) 

join

 shared(s)  shared(s)  shared(s)  shared(s) 

...

 unique(s)

FIGURE 3-6: Example: Concurrent Observer Flow
initial values of the subject). One way to ensure that the observers have been attachedbefore the update calls get executed is to change the Observer constructor to requirea unique permission to the subject. But this also creates a problem since it would limitparallelism, as all Observer object constructions would be serialized.To allow the user to specify such additional dependencies without sacrificing concur-rency, we add data groups to our system. Data groups are abstract collections of objects.In particular an object can be associated with exactly one data group at a time. Datagroups provide a higher-level abstraction and provide information hiding with respect towhat state is touched by a method.In our system a data group can be seen as a container which contains all sharedpermissions to an object. Since unique permissions already provide exclusive access tothe referenced object and immutable permissions can safely be shared, we do not associateunique and immutable permission with data groups. Therefore, unique can be used totransfer an object between data groups. We extend the definition of access permissions tooptionally refer to the associated data group. We write ’shared(REF|DG)’, where REF isthe object reference and DG specifies the data group. Similar to access permissions forobjects, we introduce access permissions to data groups:
atomic An atomic permission provides exclusive access to a data group. Working on anatomic data group automatically leads to the sequentializing the corresponding code.This is similar to a unique permission for objects. Requiring an atomic permissionmust be explicitly specified.
concurrent A concurrent permission to a data group means that multiple other concurrentpermissions to the data group exist. Code working on a concurrent data groups isexecuted with concurrency by default. This is similar to an immutable permissionfor objects. Concurrent permission is the default, so using the concurrent keywordis optional.
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3.2. APPROACH
Unlike with access permissions to objects, the user must manually split and join permis-sions to data groups. To avoid tedious and error prone management of permissions for datagroups, we propose a split block construct. A split block converts a unique permission toits data group into an arbitrarily number of concurrent permissions that may be used inits body block. Having concurrent permissions inside the body block of the data groupallows the body to be executed concurrently. After the execution of its body block, thesplit block will join all concurrent permissions back to a unique permission :

split ( DataGroup grp ) { ... }
Additional we propose the enhancement of the atomic block construct to refer to thedata group of the objects that are going to be modified :

atomic ( DataGroup grp ) { ... }
The explicit specification of data groups is optional as it can be automatically inferredfrom the code in the atomic block’s body. Nevertheless, when present, it can be usedto verify the body against the explicit specification. Having the explicit knowledge ofwhich data groups are accessed inside and atomic block could allow optimizations of thetransactional memory system or its complete replacement via a more lightweight approach[48].Figure 3-7 shows the observers example using the data group approach. We usea syntax similar to type parameters to specify and pass data groups around. A groupparameter can be used at the class level (line 1) or the function level (line 19). The’group<Z>’ command creates a new group with the name Z. The group command alwaysreturns an atomic permission to the new group.In example, line 24, a new data group with the name ’SubG’ is created. In line 26the ’split’ block is used to split the atomic permission of the ’SubG’ data group into anarbitrary number of concurrent permissions. Having a concurrent permission reestablishesa concurrent-by-default environment. Thus, the statements in the body block may beexecuted concurrently up to explicit data dependencies. This is shown in Figure 3-8. Thesecond ’split’ block (line 31) requires an atomic permission to the ’SubG’ data group andtherefore depends on the completion of the first split block. After completion of the firstsplit block’s body, all the concurrent permissions to the ’SubG’ group can be gathered andjoined back into an atomic permission.The dependencies between data groups and data dependencies are visualized in Figure3-8. The atomic group permission, generated by the group command, will be split by thefirst split block (first rectangle) into concurrent group permissions. The statements insidethe corresponding block follow the normal data dependency mechanism. The system willautomatically split the unique permission of the subject into shared permissions, to allowthe concurrent execution of the Observer creation. After the completion of the block, thesystem will join the shared permissions back into a unique permission and the split blockwill join the concurrent group permissions back into an atomic permission. The secondsplit block (second rectangle) will take the atomic group permission generated by thefirst split block and split it again into concurrent permissions for its body. Inside thebody, the normal approach of automatically splitting and joining object permissions isthen performed.The advantage of using data groups over explicit concurrency management is againbased on automatic dependency inference and the guarantee that those dependencies are
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3.2. APPROACH
1 class Subject<SG> {
2 void add(Observer<SG> o)
3 : shared(this|SG), shared(o|SG) Z⇒ shared(this|SG)
4

5 void update()
6 : shared(this|SG) Z⇒ shared(this|SG)
7 }
8

9 class Observer<SG> {
10 Observer(Subject<SG> s)
11 : shared(s|SG) Z⇒ shared(s|SG), shared(result|SG)
12 { s.add(this) }
13

14 void notify(Subject<SG> s)
15 : shared(this|SG), shared(s|SG)
16 Z⇒ shared(this|SG), shared(s|SG)
17 }
18

19 void update(Subject<SG> s)
20 : shared(s|SG) Z⇒ shared(s|SG)
21 { s.update() }
22

23 void main() {
24 group <SubG>
25

26 split (SubG) {
27 Subject<SubG> s = new Subject<SubG>()
28 Observer<SubG> obs1 = new Observer<SubG>(s)
29 Observer<SubG> obs2 = new Observer<SubG>(s)
30 }
31 split (SubG) {
32 update<SubG>(s)
33 update<SubG>(s)
34 }
35 ...
36 } FIGURE 3-7: Example: Concurrent Observer with Data Groups

met. Data groups allow the programmer to explicitly model her design intent in the sourcecode. Not only does this allow the ÆMINIUM system to infer the dependencies and correctexecution, it also improves the quality of the code itself by explicit documenting thosedependencies.
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FIGURE 3-8: Example: Concurrent Observer with Data groups Flow

22



CHAPTER
FOUR

CURRENT WORK AND PRELIMINARY RESULTS

S
o far we started by defining what a concurrent-by-default language couldlike. In particular what features and attributes we expect such a language tosupport. We decided to start with the language design aspect first, becausethe runtime system depends to a certain amount on specifics of the language itis supposed to support (e.g. support for groups or permissions at runtime). To get a betterunderstanding of possible problems and required features, we started to develop a minimumcore language calculus based on Featherweight Java (FJ) [49]. We extended FJ with uniqueand immutable permissions and assignments1. We called this new calculus Featherweight

Java with Annotations (FJA). To bridge the gap between FJA and the runtime system, wedefined an intermediate language, called Concurrent FJ (CFJ), in which data dependenciesare explicit represented. We also defined re-writing rules to transfer programs from FJAto CFJ. While developing this basic systems, we encountered several shortcomings whichlead us to extend the system to the language that has been described in Section 3.2. Inparticular we extended the FJA core language with shared permissions and data-groups,resulting in our ÆMINIUM language. Figure 4-1 shows a graphical representation of therelationship between all those languages. The next section provides a short overview ofthe latest ÆMINIUM grammar. The grammars of all precursor languages, including therewriting rules, can be found in Appendix A-D.
4.1 Latest Core-Language Specification
While developing the core-langauage which only supported unique and shared permis-sions, we soon experienced the limitations of this approach. Therefore, we developedÆMINIUM by extending our core-language with shared permissions and data-groups, asdescribed in chapter 3. Figure 4-2 shows the latest grammar reflecting those extensions inour core language2. The major changes compared to the previous core-language grammar(Figure 6-2) are:
Permission-Types As described in Section 3.2.1 we promoted permission to first classcitizens. All permission information are now collected in the Method-Specification(MS) and Field-Specifications (FS) (shown in Figure 4-3).

1FJ is a pure object calculus, therefore we need to some way of mutable state.2Note, that this grammar represents a reduced feature-set core-language and the syntax might divergefrom previously shown Java-style example code
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4.1. LATEST CORE-LANGUAGE SPECIFICATION
Featherweight Java

+

Featherweight Java
With Annotations

Concurrent
Featherweight Java

 Tranformation

+

Æminium

 Extension

 Extension

+ permissions (unique, immutable)
+ assignment (:=)                          

+ permissions (shared)
+ data groups             

FIGURE 4-1: Language Development Overview/Relationship
(programs) P ::= 〈CL, e〉(class decl.) CL ::= class C〈GS′GS〉 extends C ′〈GS′〉 {G F I M }(field decl.) F ::= C f : FS(group decl.) G ::= group〈gn〉(group specs) GS ::= gn(constructor decl.) I ::= C (C f) : MS { super(f); this.f = f ; }(method decl.) M ::= D m〈gk gn〉(C x) : MS { return e; }(references) r ::= x | f(expressions) e ::= x | e.f | e.m〈gref〉(e) | new C〈gref〉(e) | e1.f := e2

| split(gref){e} | atomic(gref){e}(variables) {x, this}FIGURE 4-2: Core-Language
Shared Permission The shared permission has been added to the set of supported per-missions. As described in Section 3.2.1, only shared permission are associated withdata-groups. Therefore only shared permissions have a group-reference in theirdefinition.
Data-Groups The core-language now supports the declaration of the data-groups asdescribed in Section 3.2.2. The class and method declaration have been extendedto support data-group parameters (enclosed in angle-brackets).
Split-Block The core-language now supports the split-block as described in Section 3.2.2.
Ext. Atomic-Block The core-language has support for the extended atomic block, as de-scribes in Section 3.2.2.
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4.2. SUMMARY
(access permissions) ap ::= access(ak, aref, gref)(permission kinds) ak ::= unique | immutable | shared(permission reference) aref ::= r | result(group kinds) gk ::= atomic | concurrent | locked(group refs) gref ::= gn(permission decl.) P ::= P, ap | unit(methods specs) MS ::= P Z⇒ P(field specs) FS ::= apFIGURE 4-3: Permission Specification

New Symbol We replaced the ( with Z⇒ symbol, to avoid the impression that thoseannotation are linear implications that themselves can only consumed once.
4.2 Summary
The preliminary results, namely a concurrent-by-default language with just read/writeoperations, provided us with insight into possible problems and pitfalls for a concurrent-by-default programming language. In particular this early work allowed use developthe concepts for ÆMINIUM. This early work also lead to two publications: ’ReducingSTM Overhead with Access Permissions’ [50] describing how permissions can be usedto optimize Software Transactional Memory systems and ’Concurrency by Default’ [51]describing the concurrency-by-default approach of ÆMINIUM.Currently we are working on the formal theory to describe ÆMINIUM and how to bridgeto the runtime system. In particular we are investigating if there is still a need for anintermediate language (like CFJ) for ÆMINIUM or not. Along this direction we have alsoto start to think about concrete runtime system implications.
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CHAPTER
FIVE

WORK PLAN AND IMPLICATIONS

I
n this chapter we discuss the overall workplan and anticipated implications. Asthis dissertation is carried out under the CMU|Portugal program, we first willprovide an overview of the program and its implications on this dissertation.For a whole overview of the program refer to the official webpage [52]. TheCMU|Portugal program is a collaboration between Carnegie Mellon University (CMU)[53] and several Portuguese universities (Coimbra in the case of this dissertation). TheCMU|Portugal PhD program has a duration of 5 years. two of the five years are spendat CMU while the remaining time is spent at the corresponding Portuguese university.Given this time constraint and the different research focuses, we will discuss in the nextsection a possible workplan for conducting the remaining tasks. In Section 5.2 we willdiscuss possible target conferences for publishing our results.

5.1 Schedule
As shown in Chapter 4, the design of a new programming language is not a straightforward process. The process, as show in Figure 5-1, is highly iterative. After one roundof designing, implementing and evaluation, the newly gathered experience is fed back intothe next design round. With every iteration, similar to a spiral, the system gets one stepcloser to the target system.Given this exploratory and iterative character of our research, we just provide a coarse-grain schedule shown in Figure 5-2. We do not separately note each iteration, becausethere is no general rule to determine how many iterations are necessary or how muchtime each iteration take. Note that we abbreviate Fall 2009 with F08, Spring 2010 withS10 and so on. The presented schedule uses the Portuguese semester regular cycle of 6month per semester. Figure 5-2 also contains a tentative location schedule, for stays inCarnegie Mellon University (CMU) and the University of Coimbra (UC) respectively.
5.2 Target Conferences
We intend to publish in conferences and workshop of the areas: programming languages ,operating systems and virtual machines, parallel/concurrent programming, and high perfor-mance computing. Table 5-1 summarizes the target conferences and workshops alongsidetheir usual deadlines.

26



5.2. TARGET CONFERENCES
Language Design

Implementation
Evaluation

FIGURE 5-1: ÆMINIUM Iterative Design Process
Task F08 S09 F09 S10 F10 S11 F11 S12 F12 S13Formal SystemImplementationEvaluationWriting ThesisCMUUC FIGURE 5-2: Coarse-Grain Gantt Diagram
Conference Field Deadline Takes PlacePrinciples of Programming Lan-guages (POPL) Programming Languages July January
Programming Language Design andImplementation (PLDI) Programming Languages November June
European Conference on Object-Oriented Programming (ECOOP) Programming Languages December July
Object-Oriented Programming, Sys-tems, Languages & Applications(OOPSLA)

Programming Languages March October
ACM Symposium on Operating Sys-tems Principles (SOSP) Operting Systems March October
Workshop on Hot Topics in Paral-lelism (HotPar) Parallel Programming October March
IEEE International Parallel andDistributed Processing Symposium(IPDPS)

Parallel Programming October May
Principles and Practice of ParallelProgramming (PPoPP) Parallel Programming September March
Super Computing (SC) High Performance Programming April NovemberInternational Super Computing (ISC) High Performance Computing February JuneTABLE 5-1: Target Conferences
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CHAPTER
SIX

Conclusions

W
e proposed a new programming paradigm called: concurrency-by-default . Inthis new paradigm the all parts of a program, to the extends of not violatingdependencies, can be executed concurrently by default. Therefore programmerdo not longer need to reason about, complicated and error prone, orderingconstrains. Programmer simply reason about dependencies and leave the execution andscheduling to the runtime system.We presented ÆMINIUM, a new programming language, designed after the concurrency-by-default paradigm. ÆMINIUM uses access permissions and data groups to specify andverify dependencies. So far our investigation focused on the core features of ÆMINIUM,resulting in the core language grammar presented in Chapter 4. This core languagegrammar establishes the base for our future work. In particular we are proceeding withthe formalization of the ÆMINIUM language, the implementation of an efficient runtimesystem and investigation of practical solutions to the granularity problem.

28



Bibliography

[1] H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency inSoftware,” Dr. Dobb’s Journal, vol. 30, no. 3, pp. 16–20, 2005.
[2] K. Bierhoff and J. Aldrich, “Modular typestate checking of aliased objects,” in Proceed-

ings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, (Montreal, Quebec, Canada), pp. 301–320, ACM, 2007.

[3] S. Jones, Haskell 98 language and libraries: the revised report. Cambridge UniversityPress, 2003.
[4] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A Theory of Communicating Se-quential Processes,” J. ACM, vol. 31, no. 3, pp. 560–599, 1984.
[5] Message Passing Interface Forum, MPI: A Message Passing Interface Standard, Juni1995. http://www.mpi-forum.org.
[6] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing In-

terface, Juli 1997. http://www.mpi-forum.org.
[7] J. Armstrong, Programming Erlang: Software for a Concurrent World. PragmaticBookshelf, July 2007.
[8] H. Boehm, “Threads cannot be implemented as a library,” in Proceedings of the 2005

ACM SIGPLAN conference on Programming language design and implementation,(Chicago, IL, USA), pp. 261–268, ACM, 2005.
[9] J. Manson, W. Pugh, and S. V. Adve, “The Java memory model,” in POPL ’05: Proceed-

ings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, (New York, NY, USA), pp. 378–391, ACM, 2005.

[10] T. Terauchi, “Checking race freedom via linear programming,” in PLDI ’08: Proceed-
ings of the 2008 ACM SIGPLAN conference on Programming language design and
implementation, (New York, NY, USA), pp. 1–10, ACM, 2008.

[11] Y. Yang, A. Gringauze, D. Wu, and H. Rohde, “Detecting data race and atomicity viola-tion via Typestate-Guided static analysis,” Tech. Rep. MSR-TR-2008-108, MicrosoftResearch, Aug. 2008.
[12] R. E. Strom and S. Yemini, “Typestate: A programming language concept for enhancingsoftware reliability,” IEEE Trans. Softw. Eng., vol. 12, no. 1, pp. 157–171, 1986.

29

http://www.mpi-forum.org
http://www.mpi-forum.org


BIBLIOGRAPHY
[13] J. Larus and R. Rajwar, Transactional Memory. Morgan & Claypool Publishers, 1 ed.,2007.
[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, andY. Zhou, “Cilk: an efficient multithreaded runtime system,” SIGPLAN Not., vol. 30,no. 8, pp. 207–216, 1995.
[15] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark, “Detectingdata races in cilk programs that use locks,” in SPAA ’98: Proceedings of the tenth

annual ACM symposium on Parallel algorithms and architectures, (New York, NY,USA), pp. 298–309, ACM, 1998.
[16] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the cilk-5multithreaded language,” SIGPLAN Not., vol. 33, no. 5, pp. 212–223, 1998.
[17] S. Srinivasan and A. Mycroft, “Kilim: Isolation-typed actors for java,” in ECOOP

’08: Proceedings of the 22nd European conference on Object-Oriented Programming,(Berlin, Heidelberg), pp. 104–128, Springer-Verlag, 2008.
[18] G. C. Hunt and J. R. Larus, “Singularity: rethinking the software stack,” SIGOPS

Oper. Syst. Rev., vol. 41, no. 2, pp. 37–49, 2007.
[19] Microsoft Corporation, Axum Programmer’s Guide, 2009. http://msdn.microsoft.com/

en-us/devlabs/dd795202.aspx.
[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-parallelprograms from sequential building blocks,” in EuroSys ’07: Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, (New York,NY, USA), pp. 59–72, ACM, 2007.
[21] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey,“DryadLINQ: A System for General-Purpose Distributed Data-Parallel ComputingUsing a High-Level Language,”
[22] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou,“Scope: easy and efficient parallel processing of massive data sets,” Proc. VLDB

Endow., vol. 1, no. 2, pp. 1265–1276, 2008.
[23] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,and V. Sarkar, “X10: an object-oriented approach to non-uniform cluster computing,”

SIGPLAN Not., vol. 40, no. 10, pp. 519–538, 2005.
[24] N. E. Beckman, K. Bierhoff, and J. Aldrich, “Verifying correct usage of atomic blocksand typestate,” SIGPLAN Not., vol. 43, no. 10, pp. 227–244, 2008.
[25] D. B. Loveman, “High performance fortran,” IEEE Parallel Distrib. Technol., vol. 1,no. 1, pp. 25–42, 1993.
[26] G. E. Blelloch, “NESL: A Nested Data-Parallel Language (3.1),” Tech. Rep. CMU-CS-95-170, Carnegie Mellon University, September 1995.

30

http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx


BIBLIOGRAPHY
[27] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha, “Implemen-tation of a portable nested data-parallel language,” in Proceedings 4th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, (San Diego),pp. 102–111, May 1993.[28] S. J. Deitz, High-Level Programming Language Abstractions for Advanced and Dy-
namic Parallel Computations. PhD thesis, University of Washington, Feb. 2005.[29] OpenMP Architecture Review Board, OpenMP Application Program Interface, May2008. http://openmp.org.[30] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press, Oct. 2007.[31] J. P. Hoeflinger, Extending OpenMP to Clusters. Intel Corporation. http://www.intel.
com.[32] E. Meijer, B. Beckman, and G. Bierman, “LINQ: reconciling object, relations and XMLin the .NET framework,” in SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, (New York, NY, USA), pp. 706–706,ACM, 2006.[33] “ISO/IEC 9075 (ISO SQL Standard).” http://www.iso.org/iso/catalogue_detail.htm?
csnumber=34132.[34] J. Duffy and E. Essey, “Running Queries On Multi-Core Processors.” online, October2007. http://msdn.microsoft.com/en-us/magazine/cc163329.aspx.[35] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu, G. Steele Jr, andS. Tobin-Hochstadt, “The Fortress language specification version 1.0,” tech. rep., Tech-nical report, Sun Microsystems, Inc, 2008.[36] “GNU Compiler Framework.” http://gcc.gnu.org/.[37] “Intel Compiler.” http://software.intel.com/en-us/intel-compilers/.[38] “Portland Group Compiler.” http://www.pgroup.com/.[39] “Microsoft Compilers.” http://msdn.microsoft.com/en-us/visualc/default.aspx.[40] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion,and M. S. Lam, “Maximizing multiprocessor performance with the suif compiler,” Com-
puter, vol. 29, no. 12, pp. 84–89, 1996.[41] “T-Systems Cell Compiler.” http://www.t-platforms.ru/en/tcell/cellcompiler.html.[42] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick, “The potentialof the cell processor for scientific computing,” in CF ’06: Proceedings of the 3rd
conference on Computing frontiers, (New York, NY, USA), pp. 9–20, ACM, 2006.[43] J. Rumbaugh, A parallel asynchronous computer architecture for data flow programs.PhD thesis, Massachusetts Institute of Technology, 1975. MIT-LCS-TR-150.[44] J.-Y. Girard, “Linear logic,” Theor. Comput. Sci., vol. 50, no. 1, pp. 1–102, 1987.

31

http://openmp.org
http://www.intel.com
http://www.intel.com
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34132
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34132
http://msdn.microsoft.com/en-us/magazine/cc163329.aspx
http://gcc.gnu.org/
http://software.intel.com/en-us/intel-compilers/
http://www.pgroup.com/
http://msdn.microsoft.com/en-us/visualc/default.aspx
http://www.t-platforms.ru/en/tcell/cellcompiler.html


BIBLIOGRAPHY
[45] R. Milner, M. Tofte, and R. Harper, The definition of Standard ML. Cambridge, MA,USA: MIT Press, 1990.
[46] J. Boyland, “Checking interference with fractional permissions,” in SAS, pp. 55–72,Springer, 2003.
[47] K. R. M. Leino, “Data groups: specifying the modification of extended state,” in Proc.

ACM SIGPLAN conference on OOPSLA, (New York, NY, USA), pp. 144–153, 1998.
[48] H.-J. Boehm, “Transactional Memory Should Be an Implementation Technique, Not aProgramming Interface,” Tech. Rep. HPL-2009-45, HP Laboratories, 2009.
[49] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: a minimal core calculusfor Java and GJ,” ACM Trans. Program. Lang. Syst., vol. 23, no. 3, pp. 396–450, 2001.
[50] N. E. Beckman, Y. P. Kim, S. Stork, and J. Aldrich, “Reducing STM Overhead withAccess Permissions,” in In Proceedings of the International Workshop on Aliasing,

Confinement and Ownership, July 2009.
[51] S. Stork, P. Marques, and J. Aldrich, “Concurrency by Default: Using Permissions toExpress Dataflow in Stateful Programs,” in In Proceedings of Onward! Conference,October 2009.
[52] “The CMU|Portugal Program.” http://www.cmuportugal.org/.
[53] “Carnegie Mellon University.” http://www.cmu.edu/.
[54] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java (TM) Language Specification.Addison-Wesley Professional, 2005.

32

http://www.cmuportugal.org/
http://www.cmu.edu/


Appendix

A FEATHERWEIGHT JAVA
Featherweight Java [49] is a small object-oriented language modeled after Java1[54]. FJ’sgoals is to provide a minimal object oriented core-language, as starting point for newlydesigned object-oriented programming languages. To be as small as possible FJ omitsmany features of Java. The most noticeable missing feature in FJ is the lack of modifiablestate, which makes FJ a pure functional programming language. The grammar of FJ isshown in Figure 6-1. As shown, FJ consists of classes which themselves consist of exactlyone constructor and an arbitrarily amount of methods and fields. Note that α standsfor the sequence of α1, α2, . . . and α β for the sequence α1 β1, α2 β2, . . .. This The onlyoperations that FJ permits are the reading of fields, method invocation and creation of newobjects.

(Classes) CL ::= class C extends C ′ { C f ; K M }(Constructors) K ::= C (C f) { super(f); this.f = f ; }(Methods) M ::= D m(C x) { return e; }(Expressions) e ::= x | e.f | e.m(e) | new C (e)FIGURE 6-1: Featherweight Java Grammar

B FEATHERWEIGHT JAVA WITH ANNOTATIONS
As described in the previous section is FJ purely functional. Therefore we have to extend FJwith the possibility of mutable state. Additional we extend FJ with the ability to annotatethe parameter of methods and constructors. Methods have an additional annotation forspecifying the required permission to the receiver object. The extended grammar for FJ
with Annotations (FJA) is shown in Figure 6-2.
C CONCURRENT FEATHERWEIGHT JAVA
The Concurrent FJ (CFJ) language is designed to explicit represent statement dependen-cies. CFJ can be derived from FJA by the rules described in Appendix D. To express the

1FJ is strictly speaking a subset of Java
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D. RE-WRITTING RULES
(Permissions) p ::= unique | immutable | shared(Classes) CL ::= class C extends C ′ { p C f ; K M }(Constructors) K ::= C (p C f) { super(f); this.f = f ; }(Methods) M ::= D m(p C x) pthis { return e; }(Expressions) e ::= x | e.f | e.m(e) | new C (e)

| e1.f := e2︸ ︷︷ ︸
e1.f :=e2 7→e2FIGURE 6-2: Featherweight Java with Annotations Grammar

dependencies between statements, the language uses an extended let-normal-form [45]as show in Figure 6-3. Every statement is associated with a unique label, which can beused as reference by other statements to declare a dependency. The dependency of astatement is specified via a set of label between the sync and let.
synch labels︸ ︷︷ ︸

dependencies

let label︸ ︷︷ ︸
name

x = 〈atom〉 in ...
FIGURE 6-3: Let-Synch-Form for Concurrent FJ

The grammar of the concurrent FJ is shown in Figure 6-4. The main changes are theintroduction of the extended let-synch-form and the renaming of expressions into theiratomic base elements.
(Classes) CL ::= class C extends C ′ { C f ; K M }(Constructors) K ::= C (C f) { super(f); this.f = f ; }(Methods) M ::= D m(C x) { S; }(Sync) S ::= synch lab let lab x = a in S | return x(Atom) a ::= x | x.f | x.m(x) | new C (x) | x.f := xFIGURE 6-4: Concurrent Featherweight Java

Imaging the following method of a class: ’Foo createFoo(Bar b){ return new Foo(b.f,this.g) }’. The ’createFoo’ method passes the ’f’ field of the Bar parameter b and the’g’ field of the current object to the constructor of Foo. Then the newly created objectis returned. Figure 6-5 shows this method after the transformation into the let-synch-form. The small arrows visualize the data-dependencies between the different let-synchstatements (as stated by the label dependencies) and the method parameters.
D RE-WRITTING RULES
This section describes the transformation rules, that convert from FJ with annotations toconcurrent FJ. Before we discuss the rules we need to define some auxiliary constructs:
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D. RE-WRITTING RULES
Foo createFoo(Bar b)

sync let labx x=b.f in
sync let laby y=this.g in

sync labx,laby let labz z= new D(x,y) in
return z

FIGURE 6-5: Example Let-Synch-Form
Definition 6-1 (Global Class Permission Context)

Ω ::= ∅ | Ω, C.m.α:permission | Ω, C.C.α:permission
α selects the permission between of the method receiver or the methods parameter.

α = 0 the permission of the receiver object

α > 0 the permission of the N’th parameter

lookup : Ω(x)→ permission

The global class permission context is defined in definition 6-1. The goal of this contextis to provide information of which permissions are associated with which parameter ormethod receiver object. The lookup function must be used with a fully qualified name(FQN), concatenated by the permission index, to retrieve the corresponding permission(e.g. Ω(Foo.bar.1) returns unique). As the name indicates, this is a global context, whichis build once during the parsing of the source-code.
Definition 6-2 (Variable Permission-Label Context)

Φ ::= ∅ | Φ, (var, permission, {labels})
lookup : Φ(var, permission)→ labels

Φ(var, unique)→ label (latest unique operation)
Φ(var, immutable)→ labels (all read operations since the last unique)
update : Φ′ = [ (variable,permission,{Φ(variable,permission),labelnew})(variable,permission,Φ(variable,permission))

]Φ
The variable permission-label context, as defined in definition 6-2, is used to dynam-ically track the relationship between variables and their corresponding read/write set ofstatements (identified via their labels) (e.g. Φ(foo, immutable)→ {l1, l5, l29} ). Becausethe content of this context is changed dynamically, this context supports both a lookupfunction, also an update function. The update function returns a copy of the old context,in which the corresponding substitution has been performed.
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D. RE-WRITTING RULES

Definition 6-3 (S-context)

S ::= � | synch labdeps let labx x = ex in S | return x
update : S′ = S[synch labdeps let labx x = ex in �]
⇐⇒ S′ = S [labdeps ⇒ labx(x, ex)]

The S-Context, as defined in definition 6-3, is used to dynamically construct methodbody for concurrent FJ methods. The update function ‘plugs’ the given argument into the‘hole’ (�) of the context. Given the way the S-context is designed, it starts out with asingle hole, appends let-synch statements (which ends with a hole), until the last hole isfilled with an return-statement.
(Φ,Souter ) ` v → (Φ,Souter , v) (R-VAR)

(Φ,Souter ) ` e1 → (Φ1,S1, y) labsdeps = {Φ1(y, unique)}
fresh_var() = x var_to_label(x) = labxΦ2 = add_to_readset(Φ1, y, labx ) Φ3 = set_var(Φ2, x, labx )(Φ,Souter ) ` e1.f → (Φ3,S1 [labsdeps ⇒ labx (x, y.f)] , x) (R-READ)

(Φ,Souter ) ` e1 → (Φ1,S1, y) (Φ1,S1) ` e2 → (Φ2,S2, z)
labsdeps = {Φ2(y, immutable),Φ2(z, unique)} fresh_var() = x var_to_label(x) = labxΦ3 = set_var(Φ2, y, labx ) Φ4 = set_var(Φ3, x, labx )(Φ1,Souter ) ` e1.f := e2 → (Φ4,S2 [labsdeps ⇒ labx (x, y.f := z)] , x) (R-ASSIGN)

(Φ,Souter ) ` e1 → (Φ1,S1, y)Ω(C.C.1) = p1 fresh_var() = x var_to_label(x) = labx(p1 = unique) ? (Φ2 = set_var(Φ1, y, labx ) ; labsdeps = Φ1(y, immutable))(p1 = immutable) ? (Φ2 = add_to_readset(Φ1, y, labx ) ; labsdeps = Φ1(y, unique))Φ3 = set_var(Φ2, x, labx )(Φ,Souter ) ` new C (e1)→ (Φ3,S1 [labdeps ⇒ labx (x, new C (y))] , z) (R-NEW)
(Φ,Souter ) ` e1 → (Φ1, S1, y) (Φ1,S1) ` e2 → (Φ2,S2, z) typeof(e1) = C1Ω(C1.m.0) = p0 Ω(C1.m.1) = p1 fresh_var() = x var_to_label(x) = labx(p0 = unique) ? (Φ3 = set_var(Φ2, y, labx ) ; labs0 = Φ2(y, immutable)))(p0 = immutable) ? (Φ3 = add_to_readset(Φ2, y, labx ) ; labs0 = Φ2(y, unique)))(p1 = unique) ? (Φ4 = set_var(Φ3, z, labx ) ; labs1 = Φ3(z, immutable)))(p1 = immutable) ? (Φ4 = add_to_readset(Φ3, z, labx ) ; labs1 = Φ3(z, unique)))Φ5 = set_var(Φ4, x, labx ) labsdeps = {labs0, labs1}(Φ, Souter ) ` e1.m(e2)→ (Φ5,S2 [labsdeps ⇒ labx (x, y.m(z))] , x) (R-CALL)

(∅,�) ` e1 → (Φ1,S1, y)
D m(C p){return e1} → D m(C p){S1 [ return y; ]}) (R-METHOD)

FIGURE 6-6: Re-Writing Rules
The re-writing rules for the transformation between FJ with permissions and concurrentFJ are shown in Figure 6-6. To increase readability helper functions (see Figure 6-7) havebeen introduced to hide the sometimes wordy syntax of the context manipulations. Therules use the following kind of judgment:

(Spre,Φin) ` e → (Spost,Φpost, x)
36



D. RE-WRITTING RULES
Spre S-Context before the evaluation of eΦpre Permission-Context before the evaluation of e
e expression
Spost S-Context after the evaluation of eΦpost S-Context after the evaluation of e
x the variable which contains the result of e

The judgment evaluates the expression e. During the evaluation process the input con-texts, Spre and Φpre, are transformed to the output contexts, Spost and Φpost . Additionallyto the new contexts the judgment returns the variable that hold the evaluation result ofthe expression. The rules shown in Figure 6-6 work as follows:
R-var The R-var rule simply returns the variable itself along with the unmodified contexts.
R-read The R-read rule evaluates the sub-expression e1 recursively. The evaluation resultof e1 will be bound to the variable y. Then the rule retrieves all labels (labsdeps) thatare associated with the latest write accesses to y. The rule creates a fresh variablex, along with a corresponding label (labx), which will contain the evaluation resultof the original expression (e). This local label is then added to the read-set of the yvariable by calling the add_to_readset helper-method. At last the rule initializes theread-/write-set of the newly created variable to point to the local label, by callingthe set_var helper-method and updates the S-context, by appending a correspondinglet-synch-statement.
R-assign The R-assign rule recursively evaluates the sub-expressions e1 and e2 with theresults bound to the variables y and z. Then the rule retrieves all labels (labsdeps)that are associated with the latest read accesses to y and the latest write accessesto z. Then the rule creates a fresh variable x, along with a corresponding local label(labx), which contains the evaluation result of the original expression (e). Then therule reset the read-/write-set of the variables x and y to point to the local label,by calling the set_var helper-method and updates the S-context, by appending acorresponding let-synch-statement.
R-new The R-new rule first evaluates the sub-expression e1 recursively. The evaluationresult of the e1 evaluation will be bound to the variable y. The rule then retrievesall labels (labsdeps) that are associated with the latest write accesses to y. Therule creates a fresh variable x, along with a corresponding local label (labx), whichcontains the evaluation result of the original expression (e). Then the rules looks-up the permission specification of the constructor parameter (p1). If the parameterpermission is unique, then the rule reset the read-/write-set of the y variable topoint to the local label and retrieves all labels (labsdeps) that are associated withthe latest read accesses to y. If the parameter permission is immutable, then therule adds the local label to the read-set of the y variable and retrieves all labels(labsdeps) that are associated with the latest write accesses to y. Lastly the ruleinitialize the read-/write-set of the variables x to point the local label by calling the

set_var helper-method and updates the S-context, by appending a correspondinglet-synch-statement.
R-call The R-assign rule recursively evaluates the sub-expressions e1 and e2 with theresults bound to the variables y and z. The rule creates a fresh variable x, along
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D. RE-WRITTING RULES
with a corresponding local label (labx), which contains the evaluation result of theoriginal expression (e). Then the permissions to the receiver object (p0) and theargument (p1) is looked-up. If the receiver object requires an unique permission,the rule set the read-/write-set of the y variable to point to the local label andretrieves the old read-set (labs0) of the variable y. Otherwise, if an immutablepermission is required, the rule adds the local label to the read-set of the variabley and retrieves to the write-set (labs0) of the variable y. If the argument requiresan unique permission, the rule set the read-/write-set of the z variable to point tothe local label and retrieves the old read-set (labs1) of the variable z. Otherwise,if an immutable permission is required, the rule add the local label to the read-setof the variable z and retrieves to the write-set (lab1) of the variable z. Lastly therule reset the read-/write-set of the variables x to point the local label by callingthe set_var helper-method, merges the depending labels of the receiver object andthe argument to labsdeps and updates the S-context, by appending a correspondinglet-synch-statement.

R-method The R-method recursively evaluates the sub-expression e, with its result boundto the variable y. Then the rule updates the S-context, by appending, and therewithpermanently closing the last hole, a return-statement with the variable y.
typeof(e) = C (return the type/class a given expression)
fresh_var() = x (returns a fresh variable)
var_to_label(id) = labid (returns a fresh label based on the given variable)
add_to_readset(Φ, var, label) = Φ′ ⇐⇒ Φ′ = [(var, immutable)→ {label,Φ(var, immutable)}] Φ
set_var(Φ, var, label) = Φ′ ⇐⇒ Φ′ = [(var, unique)→ {label}] [(var, immutable)→ {label}] ΦFIGURE 6-7: Helper Functions
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