11-711: Algorithms for NLP
Assignment 4: Word Alignment

Due 11:59pm ET, Dec 4, 2017

Collaboration Policy

You are allowed to discuss the assignment with other students and collaborate on developing algo-
rithms at a high level. However, your writeup and all of the code you submit must be entirely your
own.

Setup

As usual you will need:

1. assign_align.tgz

2. data_align.tar.gz

You will find it useful to consult Vogel, Ney and Tillmann 1996 “HMM-based Word Alignment in
Statistical Translation.”

Preliminaries

In this assignment, you will explore the problem of word alignment, one of the critical steps in
machine translation shared by all phrase-based statistical machine translation systems.

Data The data for this assignment is available on the web page as usual, and consists of sentence-
aligned French-English transcripts of the Canadian parliamentary proceedings.

The assignment harness is in the Java class:

edu.berkeley.nlp.assignments.align.AlignmentTester

Make sure you can run the main method of the AlignmentTester class. There are a few more
options to start out with, specified using command line flags. Start out running:

java —-cp assign_align.jar -server -mx500m
edu.berkeley.nlp.assignments.align.AlignmentTester
-path path/to/align_data -alignerType BASELINE -data miniTest -printAlignments
-justAlign -maxTrain O

You should see a few toy sentence pairs fly by, with baseline (diagonal) alignments. The ver-
bose flag controls whether the alignment matrices are printed. For the miniTest, the baseline isn’t
so bad. Look in the data directory to see the source miniTest sentences. They are:

"English" "French"

<s snum=1> A B C </s> <s snum=1> X Y Z </s>

<s snum=2> A B </s> <s snum=2> X Y </s>

<s snum=3> B C </s> <s snum=3> Y W Z </s>

<s snum=4> D F </s> <s snum=4> U V W </s>

Alignments (snum, e, f, sure/possible) 1 11 S 3115122832
381338 41182118 42282228

The intuitive alignment is X=A, Y=B, Z=C, U=D, V=F, and W=null (convince yourself of this).
The baseline will get most of this set right, missing only the mid-sentence null alignment:

The hashes in the output indicate the proposed alignment pairs, while the brackets indicate refer-
ence pairs (parentheses for possible alignment positions). Note that at the end of the test output
you get an overall precision (with respect to possible alignments), recall (with respect to sure align-
ments), and alignment error rate (AER).

You should then try running the code with -data validate and -data test, which will load
the real validation set and test set respectively, and run the baseline on these sentences. Baseline
AER on the test set should be 68.7 (lower is better). If you want to learn alignments on more than
the test set, as will be necessary to get reasonable performance, you can set the flag -maxTrain to
a value k, which will load in k additional sentences of training data. Maximum values of k usable
by your code will probably be between 10000 and 100000, depending on how much memory you
have, and how efficiently you encode things. (There are over a million sentence pairs there if you

want them — to use anywhere near that much, you’ll have a machine with large amounts of RAM.)

You’'ll notice that the code is hardwired to English-French, just as the examples in class were
presented. Even if you don’t speak any French, there should be enough English cognates that you
should still be able to sift usefully through the data. For example, if you see the matrix

[#] | ils
[1C)H # | connaissent
| tres
| bien
[#] | 1le
[(#] | probleme
) | de
[#] | surproduction
[#11
J
t k a t o p
h n b h v r
e o 0 e e o
y w u r b
t p 1
r e
o m
d
u
c
t
i
o
n

you should be able to tell that “problem” got aligned correctly, as did “overproduction,” but some-
thing went very wrong with the “know about” region.

Of course, the actual word to word alignments aren’t the only thing we’re interested in. The
main use of these alignments are as input to the rule extraction procedure. So in addition to the
word alignments themselves, we're also going to look at the phrase tables that are extracted from
the alignments. To see this, try running the following command:

java -cp assign_align.jar -server -mx500m
edu.berkeley.nlp.assignments.align.AlignmentTester
-path path/to/align_data -alignerType BASELINE -data miniTest
-phraseTableOut phraseTable.txt
-randomlm -maxTrain 100

You should see a brief description of a phrase table being trained, and then several (very bad)
translations. The test harness uses the same data as the aligner (the alignment test set, plus
however many training sentences you specified with -maxTrain) to extract a phrase table, and
then uses it to translate the decoding test set. The phrase table that was extracted will be written
to phraseTable.txt, so you can examine it to see what kinds of errors are resulting from your
word alignments. The translations you just saw are bad for two reasons: first, the phrase table is

just very small, being trained on a trivial amount of data. Second, even if run on more data, the
baseline word aligner is quite bad and will result in a lot of bogus translation rules. Your goal for
this assignment will be to write more credible word aligners, being careful to ensure that they are
still efficient enough to scale up to more reasonable amounts of training data, as both the quality of
the alignments and the number of training sentences are important in improving translation quality
(note: you should be sure remove the -randomLm option to run real experiments, so that an actual
language model is employed).

Description

In this assignment, you will implement three word-alignment models:

1. A heuristic aligner
2. IBM Model 1

3. The HMM model of Vogel et al. (1996)

Heuristic aligner As a first step, and to get used to the data and support classes, you should
edit HeuristicAlignerFactory and build a heuristic replacement for BaselineWordAligner. Your
first model should not be a probabilistic translation model, but rather should match up words on
the basis of some statistical measure of association, using simple statistics taken directly from the
training corpora. One common heuristic is to pair each French word f with the English word e for
which the ratio ¢(f,e)/(c(e) - ¢(f)) is greatest. Another is the Dice coefficient, described in several
of the readings. Many possibilities exist; play a little and see if you can find reasonable alignments
in a heuristic way.

Note that this method should easily scale up to use all of the training data; simply omit the
-maxTrain flag (or set it to a high value) to run on all training examples.

Model 1 The first probabilistic model to implement is IBM Model 1, built by Model1AlignerFactory.
Recall that in Models 1 and 2, the probability of an alignment a for a sentence pair (f, e) is

P(f,ale) = H P(ai = jli, le, [f]) P(file;)

where the null English word is at position 0 (or —1, or whatever is convenient in your code). The
simplifying assumption in Model 1 is that P(a; = j|i,|e|, |f]) = 1/(|e| + 1). That is, all positions
are equally likely. In practice, the null position is often given a different likelihood, say 0.2, which
doesn’t vary with the length of the sentence, and the remaining 0.8 is split evenly amongst the
other locations.

The iterative EM update for this model is as follows. For every pair of an English word type e and
a French word type f, you count up the (fractional) number of times tokens f are aligned to tokens

of e and normalize over values of e (the math is in lecture slides in more detail). That will give you
a new estimate of the translation probabilities P(f|e), which leads to new alignment posteriors,
and so on. For the miniTest, your Model 1 should learn most of the correct translations, including
aligning W with null. However, it will be confused by the DF / UV block, putting each of U and
V with each of D and F with equal likelihood (probably resulting in a single error, depending on
how ties are resolved).

HMM If you inspect the output of your Model 1 aligner, you should notice that errors in align-
ments frequently arise from the model “jumping around” dramatically, whereas we know that for
these two closely related languages, alignments should be roughly monotonic. To fix these errors,
you need to introduce a distortion model that can learn that alignments tend to clump together,
with adjacent English words usually aligning to adjacent French words.

For the HMM model (built by HmmAlignerFactory, the distortion component is augmented to
include the previous alignment choice a;_1:

P(a; = jli,a;—1, lel, |f])

One common parameterization is to set d = j — a;_1, and learn a distribution over values of d, but
other options exist, such as bucketing distances and learning more general distributions. Compared
to Model 1, you will now need to compute edge marginals p(a;, a;—1) in your E-step so that you
will be able to optimize these parameters in the M-step.

Again, to make this work well, one generally needs to treat the null alignment as a special case, giv-
ing a constant chance for a null alignment (independent of position), and leaving the other positions
distributed as above. How you bucket those displacements is up to you; there are many choices and
most will give broadly similar behavior. If you run your HMM model on the miniTest, it should
get them all right (you may need to fiddle with your null probabilities). How you parameterize the
alignment prior is up to you.

Using some extra sentences and the HMM or better, you should be able to get your best AER down
below 40% very easily and below 25% fairly easily, but getting it much below 15% will require some
work (5% is possible!). For reference, our implementation of intersected! Model 1 achieves a test-
set AER of 33% when trained with 10000 sentences, while our intersected HMM implementation
achieves 16%. As for BLEU scores, they will be low for this assignment, unless you scale up to
large amounts of data. Our implementation of intersected Model 1 achieves a BLEU of 10.7 when
trained on 10000 sentences. Our implementation of the intersected HMM Model achieves 18.2 on
10000 sentences and 23.3 on 100000 sentences.

Submission and Grading

Write-ups You should turn in a 2-3 page write-up as usual. You should clearly describe what
implementation choices you made, compare the performance of the various aligners, and provide
error analysis.

!By “intersected”, we mean that a model was trained independently in each direction, and the resulting alignments
were intersected in post-processing.

Submission You will submit assign_align-submit. jar and a PDF of your writeup to an online
system. We will sanity-check with the following command:

java -cp assign_align.jar:assign_align-submit.jar -server -mx50m
edu.berkeley.nlp.assignments.align.AlignmentTester
-path path/to/align_data -alignerType HMM -sanityCheck -maxTrain O

We will grade with the following command:

java —-cp assign_align.jar:assign_align-submit.jar -server -Xmx8g
edu.berkeley.nlp.assignments.align.AlignmentTester
-path path/to/align_data -alignerType HMM -maxTrain 10000
-data test

Grading You should aim to get a comparable AER and BLEU score to those of the reference
with your HMM aligner on 10000 training sentences. Your ability to scale up and use more data
will also be evaluated; you should give results for large-scale experiments in your writeup. We are
not too concerned with the performance of your heuristic aligner — we just want to see that you
thought about the problem and designed something reasonable. As always, the best submissions
will be those that perform thoughtful error analysis and/or describe interesting extensions to the
basic aligners in this assignment.

Although there no hard requirements on training time, due to limited compute resources for au-
tograding, we will expect your aligners to take no more than one hour to train with -maxTrain
10000. For larger-scale experiments, you should report training time in your writeup.

