ittt
OIS

UNIT 3B
Algorithmic Thinking

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Finding the maximum

How do we find the maximum in a sequence of
integers shown to us one at a time?

183

What’ s the maximum?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Finding the maximum
Required: a non-empty list of integers.

1. Set max_so_far equal to the first number
in the list.
2. For each number n in the list:
a. If nis greater than max_so_far,
then set max_so_far equal to n.

Return: max_so_far as the maximum of the list.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Representing Lists in Python

We will use a list to represent a collection of data
values.

scores [78, 93, 80, 68, 100, 94, 85]

colors ['red', 'green', 'blue']

A list is an ordered sequence of values.

15110 Principles of Computing, 4
Carnegie Mellon University - CORTINA

Some List Operations
>>>scores = [78, 93, 80, 68, 100,94,85]

>>>type(scores)
<class 'list'>

>>> len(scores)
7

>>>80 in scores
True

>>>scores + scores
[78, 93, 80, 68, 100, 94, 85, 78, 93, 80, 68,
100, 94, 85, 94]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

List Indices

78 93 80 68 100 94 85
0 1 2 3 4 5 6
>>>scores[0]
78
>>> scores[6]
85 indices

>>> scores[7]

IndexError: list index out of range

>>>scores[1:3]

[93, 80]

>>>gscores[1l:7:2]

[93, 68, 94]

>>>gscores.index(100)

4

>>>scores[-1]

85 6

Operation Result

x in s True if an item of sis equal to x, else False
x not in s False if anitem of sis equal to x, else True
s +t the concatenation of s and ¢

s\ ¥ n, n *'s n shallow copies of s concatenated

s[i] ith item of s, origin 0

s[i:]j] slice of s from i to j

s[i:j:k] slice of s from i to j with step k

len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (i) index of the first occurence of iin s

s.count (i) total number of occurences of iin s

source: docs.python.org

Lists Are Mutable

>>>scores.append(95)
>>>scores
[78, 93, 80, 68, 100, 94, 85, 95]

78 93 80 68 100 94 85 95

Operation
s[i] = x

s[i:j] = t

del s[i:j]

s[i:j:k] = t

del s[i:j:k]

s.append (x)

«

.extend (x)

w

.count (x)

[

.index(x[, il, j11)

.insert (i, x)

w

[

-pop ([i])

w

.remove (x)

[

.reverse ()

w

.sort([key[, reverse]])

Result
item i of s is replaced by x

slice of s from i to j is replaced by the
contents of the iterable ¢

sameas s[i:j] = []

the elements of s [i:5:x] are replaced by
those of t

removes the elements of s[i:3:k] from

the list

same as s[len(s):len(s)] = [x]
same as s[len(s) :len(s)] = x

return number of i's for which s(i] == x
return smallest k such that s (k] == x and

i<=k<j
sameas s[i:i] = [x]

sameas x = s[i]; del s[i]; return
x

Same as del s[s.index(x)]
reverses the items of s in place

sort the items of s in place

source: docs.python.org 9

lterating over Lists

def print colors(colors):
for ¢ in colors:

print(c)

Python binds c to the
first item in colors, then
execute the statement
in the loop body, binds
c to the next item in the
list colors etc.

def print colors2(colors):

for i in range(0,len(colors)):

print(colors[i])

def print skip(colors):

for i in range(0,len(colors),2):

print(colors[i])

Finding the max using Python

1. Set max_so_far equal to the first number in the list.
2. For each number n in the list:
a. If nis greater than max_so_far,
then set max_so_far equal to n.
Return: max_so_far as the maximum of the /ist

def findmax(list):
max_so_far = list[O0]
for i in range(l,len(list)):
n = list[i]
if n > max_so_far:
max_so_far = n

return max_so_far

Alternate Version

def findmax2(list):

max_so_far = list[O0] “For each item

<« in the list...”

if item > max_so_far:

for item in list:

max_so_far = item

return max_so_far

N SIEve
1 OF

RATOSTHINSS

A 2000 year old algorithm (procedure) for
generating a table of prime numbers.

2,3,5,7,11,13, 17, 23, 29, 31, ...

A positive integer is “prime” if it is not
divisible by any smaller positive integers
except 1.

Sieve of Eratosthenes

To make a list of every prime number less than n:

1. Create a list numlist with every integer from 2 ton, in
order. (Assume n > 1.)

2. Create an empty list primes.

3. Copy the first number in numlist to the end of primes.
(It must be prime. Why?)

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime
number.

5. Halt if numlist is empty. Otherwise, go back to step 3.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Sieve of Eratosthenes - Example

primes = []
numlist = [2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25]

primes = [2]
numlist = [3,5,7,9,11,13,15,17,19,21,23,25]

primes = [2,3]
numlist = [5,7,11,13,17,19,23,25]

primes = [2,3,5]
numlist = [7,11,13,17,19,23] etc.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Lists: Two Special Cases

values = []
This is the empty list (a list with length 0).

values = []
for i in range(1,10):
values.append (i)
This is the list with the first 9 positive integers in
order.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Starting the algorithm in Python

To make a list of every prime number less than n:

1. Create a list numlist with every integer from 2 to n, in
order. (Assume n > 1.)

2. Create an empty list primes.

def sieve(n):
numlist = []
for i in range(2,n+l):
numlist.append (i)
primes = []

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Continuing...

3. Copy the first number in numlist to the end of primes.

(It must be prime. Why?)

primes.append(numlist[0])

Does this operation remove the first element
from numlist?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Removing multiples of a prime

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime number.

Where is the most recently discovered prime added to the
primes list?
primes([len(primes)-1] (i.e. last element)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Removing multiples of a prime

4. lterate over numlist to remove every number that is a
multiple of the most recently discovered prime number.

How do we determine whether a number x is a multiple of
the most recent prime?

Use the modulo operator!

X % primes[len(primes)-1] == 0

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 20

10

Sifting: Removing Multiples of a
Number - UPDATED
def sift(list,k):
remove all multiples of k from list
index = 0
while index < len(list):
if list[index] % k ==
list.remove(list[index])
else:
index = index + 1
return list

21

Removing multiples of a prime

4. lterate over numlist to remove every number that is a

multiple of the most recently discovered prime number.

lastprime = primes|[len(primes)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing

Carnegie Mellon University - CORTINA 22

11

Removing multiples of a prime

5. Halt if numlist is empty. Otherwise, go back to step 3.

We need to repeat steps 3 and 4:
primes.append(numlist[0])
lastprime = primes[len(primes)-1]

numlist = sift(numlist, lastprime)

until numlist is empty. How do we do this?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 23

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while len(numlist) > 0
primes.append(numlist[0])
lastprime = primes[len(primes)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 24

12

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while len(numlist) >= 1

primes.append(numlist[0])
lastprime = primes[len(primes)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 25

Repeating a task

Since we want to repeat a task, use a loop!
Since we don't know how many iterations are
necessary, we will use a while loop.

while len(numlist) != 0

primes.append(numlist[0])
lastprime = primes[len(primes)-1]
numlist = sift(numlist, lastprime)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 26

13

Final Algorithm in Python

def sift(list,k):
remove all multiples of k from list
index = 0
while index < len(list):
if list[index] % k == 0:
list.remove(list[index])
else:
index = index + 1

return list

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 27

Final Algorithm in Python (cont'd)

def sieve(n):

numlist = []

for i in range(2,n+l):
numlist.append(i)

primes = []

while len(numlist) > O0:
primes.append(numlist[0])
lastprime = primes[len(primes)-1]
numlist = sift(numlist, lastprime)

return primes

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 28

14

