00000000
PR
aaaaln’s’s

UNIT 4B
lteration: Sorting

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Sort by Sort by: | Best Match El
IS . Time: ending soonest
IDESCRIPTION j' ~ gscendln-g Time: newly listed
Descending Price + P&P: lowest first
Then by Price + P&P: highest first
Iﬁ & Ascending Price: lowest first
_ 1 Price: highest first
N Artist | nearest first
@ Dig Your Grave Modest Mouse 12 ' i =
I [#] Ostriches & Chirping Elliott Smith 0:33 ! fzlsed s
[Interlude (Milo) Modest Mouse 0:58
My list ha P we o -
[we've Got a File On... Blur 1:02 N
m YouIlf oo
[#) Fewer Words Badly Drawn ... =~ 1:13
@ Life's Incredible Ag... Michael Giacc... 1:24 Search results for amd
Optior| [30 Century Man Scott Walker 1:26 About 83,600 resuts
@ Lava In the Afterno... Michael Giacc... 1:29 2 search options
[The Chase Stephen Trask = 1:31 esuittype- Sortby:
o h | id Th bi 7 Al Relevance
@ The Way | Feel Inside e Zombies 1:34 Videos
[Mr. Huph will See ... Michael Giacc... 1:35 | ¥ Channels View count
— Playlists Rating
[# Don't Ask Me I'm O... BadlyDrawn ... 1:36 4
[T Let Me Tell You Ab... |Mark Mothers... 1:38 .Y L_

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort Outline

def isort(list)
result = []
for val in list:
insert val in its proper
place in result
return result

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

insert function

list.insert(position, value)

>>> a = [10, 30, 20]
>>> a

[10, 30, 20]

>>> a.insert(0,”sna”)
>>> a

[“sna”, 10, 30, 20]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

insert function (cont'd)

>>> a.insert (2, “foo’)
>>> a

[“sna”, 10, “foo”, 30, 20]
>>> a.insert (5, “bar’)
>>> a

[“sna”, 10, “foo”, 30, 20, “bar’]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort, Refined

def isort (list)
result = []
for val in list:
compute place to insert
result.insert(place, val)
return result

How do we find the right place to insert?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

gr_index

index of first element greater than item
def gr index(list, item):
index = 0
while index < len(list) and \
list[index] < item:
index = index + 1

return index

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing gr index

>>> a = [10, 20, 30, 40, 50]
>>> a

[10, 20, 30, 40, 50]
>>> gr_index(a, 3)

0

>>> gr_index(a, 14)
1

>>> gr_index(a, 37)
3

>>> gr_index(a, 99)
5

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort, Complete

def isort (list)
result = []
for val in list:
place = gr_index(result, val)
result.insert(place, val)
return result

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Debugging Insertion Sort

def isort (list)

result = []

print(result) # for debugging

for val in list:
place = gindex(result, val)
result.insert(place, val)
print(result) # for debugging

return result

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[]
[3]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[]

[3]

[1, 3]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[]

[3]

[1, 3]

[1, 3, 4]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 2, 6])

[]

[3]
[1I
[1I
[1,

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

>>>

[]

[3]
[1,
[1I
[1I
[1I

Testing isort

isort([3, 1, 4, 1, 5, 9, 2, 6])

P RPWW
w
N —
[~
—

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

>>> isort([3,

[]

[3]
[1I
[1I
[1,
[1,
[1I

~

~

FR R WW

~

wwwhkd

~

Testing isort

1, 4, 1,

4]
4, 5]
4, 5, 9]

15110 Principles of Computing,

S,

Carnegie Mellon University - CORTINA

>>>

[]

[3]
[1,
[1I
[1I
[1I
[1,
[1,

Testing isort

isort([3, 1, 4, 1, 5,

3]

3, 4]

1, 3, 4]

1, 3, 4, 5]

1, 3, 4, 5, 9]
1/ 2/ 3/ 4/ 5/ 9]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 2, 6])

[]

[3]

[1, 3]

[1, 3, 4]

[1, 1, 3, 4]

[1, 1, 3, 4, 3]

[1, 1, 3, 4, 5, 9]

[1, 1, 3, 4, 5, 6, 9]

[, 1, 2, 3, 4, 5, 6, 9]
=>1[1, 1, 2, 3, 4, 5, 6, 9]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Can We Do Better?

isort doesn’t change its input list.
Instead it makes a new list, called result.
This takes twice as much memory.

Can we write a destructive ("in place") version
of the algorithm that doesn’t use extra
memory?

That is the version shown in the book (see
chapter 4).

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 20

10

Destructive (In Place) Insertion Sort

Given a list L of length n, n > 0.
1. Seti=1.
2. While i is not equal to n, do the following:

a. Insert L[i] into its correct position in L
between indices 0 and i inclusive.

b. Add 1toi.
3. Return the list L which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

21

Example

L = [53, 26, 76, 30, 14, 91, 68, 42]

is= 1

Insert L[1] into its correct position in L between
indices 0 and 1 inclusive and then add 1 to i:

53 moves to the right,

26 is inserted back into the list

L = [26, 53, 76, 30, 14, 91, 68, 42]

i= 2

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

22

11

Example

L = [26, 53, 76, 30, 14, 91, 68, 42]

i= 2

Insert L[2] into its correct position in L between
indices 0 and 2 inclusive and then add 1 to i:

76 is already in the correct place

L = [26, 53, 76, 30, 14, 91, 68, 42]

is= 3

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

23

Example

L = [26, 53, 76, 30, 14, 91, 68, 42]

is= 3

Insert L[3] into its correct position in L between
indices 0 and 3 inclusive and then add 1 to i:

76 moves to the right, then 53 moves to the right,

now 30 is inserted back into the list

L = [26, 30, 53, 76, 14, 91, 68, 42]

i= 4

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

24

12

Look Closer at Insertion Sort

Given a list L of length n, n > 0.

1.
2.

Seti=1.

While i is not equal to n, do the following:

Precondition for each iteration: L[0..i) is sorted

a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.

b.Add 1toi.

Postcondition for each iteration: L[0..i) is sorted

Return the list L which will now be sorted.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 25

Look Closer at Insertion Sort

Given a list L of length n, n > 0.

1.
2.

3.

Seti=1.

While i is not equal to n, do the following:

Loop invariant: L[0..i) is sorted

a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.

b.Add 1toi.

Return the list L which will now be sorted.

A loop invariant is a condition that is true at the start and end of

each iteration of a loop.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 26

13

Example (cont’ d)

L = [26, 30, 53, 76, 14, 91, 68, 42]
i= 4
Insert L[4] into its correct position in L between

indices 0 and 4 inclusive and then add 1 to i:
76 moves to the right, then 53 moves to the right,
then 30 moves to the right, then 26 moves to the right,
now 14 is inserted back into the list
L = [14, 26, 30, 53, 76, 91, 68, 42]
i= 5

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 27

Example

L = [14, 26, 30, 53, 76, 91, 68, 42]

is= 5

Insert L[5] into its correct position in L between
indices 0 and 5 inclusive and then add 1 to i:

91 is already in its correct position

L = [14, 26, 30, 53, 76, 91, 68, 42]

i= 6

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 28

14

Example

L = [14, 26, 30, 53, 76, 91, 68, 42]

i= 6

Insert L[6] into its correct position in L between
indices 0 and 6 inclusive and then add 1 to i:

91 moves to the right,

76 moves to the right,

now 68 is inserted back into the list

L = [14, 26, 30, 53, 68, 76, 91, 42]

i= 7

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 29

Example

L = [14, 26, 30, 53, 68, 76, 91, 42]
i= 7
Insert L[7] into its correct position in L between

indices 0 and 7 inclusive and then add 1 to i:
91 moves to the right, then 76 moves to the right,
then 68 moves to the right, then 53 moves to the right,
then 42 is inserted back into the list
L = [14, 26, 30, 42, 53, 68, 76, 91]
i =

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 80

15

Example

[14, 26, 30, 42, 53, 68, 76, 91]
i =8

The list is sorted.

But how do we know that the algorithm always
sorts correctly?

15110 Principles of Computing, 31
Carnegie Mellon University - CORTINA -

Reasoning with the Loop Invariant

The loop invariant is true at the end of each
iteration, including the last iteration. After the
last iteration, when we go to step 3:

L[O..i) is sorted AND i is equal to n

These 2 conditions imply that L[0..n) is sorted,
but this range covers the entire list, so the list

must always be sorted when we return our final
answer!

15110 Principles of Computing, 32
Carnegie Mellon University - CORTINA

16

Insertion Sort in Python

def isort(list):
i=1
while i < len(list):
move left(list,

1) = insert list[i] into

i=1i+1 list[0...i] in its
return list correct sorted
position

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Moving left

To move the element x at index i “left” to its correct
position, start at position i-1, and search left until we
find the first element that is less than x.

Then insert x back into the array to the right of the first
element that is less than x when you searched from
right to left in the sorted part of the array.

(The insert operation does not overwrite. Think of it
as “squeezing into the array”.)

Can you think of a special case for the step above?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 84

17

Moving left: examples
Insert 68: /\

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.
Insert 68 to the right of 53.

Insert 76: A

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

Insert 14: SPECIAL CASE

a = [26, 30, 53, 76, 14, 91, 68, 42]
Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into the position 0.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 35

move leftin Python

. . remove the item at
def move_ left(list, i): position i in List

/ and store it in x

x = list.pop (i)
j=1i-1
while j >= 0 and 1list[]j] > =x:

j=3-1
. . . insert x at position
list.insert(j + 1, X) j+1of1ist, shifting
all elements from j+1
and beyond over one
position

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 36

18

Insertion Sort, completed

def move_left(list, i):
x = list.pop(i)
j=1i-1
while j >= 0 and list[j] > x:
j=3-1

list.insert(j + 1, x)

def isort(list):
i=1
while i < len(list):
move left(list, i)
i=1i+1
return list

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

37

19

