UNIT 4C
Iteration: Scalability & Big O

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Counting Operations

We measure time efficiency by counting the
number of operations performed by the
algorithm.

But what is an operation?
assignment statements
comparisons
return statements

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Linear Search: Worst Case

let n = the length of list.
def search(list, key):

index = 0 1
while index < len(list): n+l
if list[index] == key: n
return index
index = index + 1 n
return None 1
Total: 3n+3
Camgie Mellon Universiy - CORTINA
Linear Search: Best Case
let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): 1
if list[index] == key: 1
return index 1
index = index + 1
return None
Total: 4

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Counting Operations

 How do we know that each operation we count
takes the same amount of time? (We don’ t.)

* So generally, we look at the process more
abstractly and count whatever operation
depends on the amount or size of the data
we’ re processing.

* For linear search, we would count the number
of times we compare elements in the list to the
key.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Linear Search: Worst Case Simplified

let n = the length of list.
def search(list, key):
index = 0
while index < len(list):
if list[index] == key: n
return index
index = index + 1
return None

Total: n

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Linear Search: Best Case Simplified

let n = the length of list.
def search(list, key):
index = 0
while index < len(list):
if list[index] == key: 1
return index
index = index + 1
return None
Total: 1

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Order of Complexity

* Forvery large n, we express the number of
operations as the (time) order of complexity.

* Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only

concerned about
the highest power
of n.

15110 Principles of Computing, 8
Carnegie Mellon University - CORTINA

O(n) (“Linear”)

2n+8
4 3n+3 n
Number of
Operations
n
(amount of data)
15110 Principles of Computing, 9
Carnegie Mellon University - CORTINA
Numbe?r of A n
Operations

40 For a linear algorithm,

if you double the amount
of data, the amount of work
you do doubles
(approximately).

20

10

»
»

10 20 40 n
(amount of data)

15110 Principles of Computing, 10
Carnegie Mellon University - CORTINA

O(1) (“Constant-Time”)

Number of a
Operations

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

v

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

(amount of data)

* Worst Case:

* Best Case:

* Average Case:

Linear Search

O(n)

0(1)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort: Worst Case

let n = the length of list.
def isort(list):

i=1

while i < len(list):
move left(list, i) n-1
i=1i+1

return list

There aren-1 move left operations. But how

many operations does each move left take?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort: Worst Case

When i =1, move_left shifts at most 1 element.
When i = 2, move_left shifts at most 2 elements.

When i = n-1, move_left shifts at most n-1
elements.

The maximum number of elements shifted, S,
approximates the total amount of work done in
the worst case.

S=1+2+...+(n-1) =n(n-1)/2 = O(n?)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Order of Complexity

Number of operations Order of Complexity

n2 O(n?)

n%/2+3n/2-1 O(n?)

2n% +7 0(n?)
Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15110 Principles of Computing, 15

Carnegie Mellon University - CORTINA

O(n2?) (“Quadratic”)

n2
4 on2+7 n%/2 + 3n/2 -1
Number of
Operations
n
(amount of data)
15110 Principles of Computing, 16

Carnegie Mellon University - CORTINA

O(n?)

Number of
Operations
1600} N2
For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).
400
100
10 20 40 N
(amount of data)
15110 Principles of Computing, 17
Carnegie Mellon University - CORTINA
Insertion Sort
* Worst Case: O(n?)
* Best Case: O(n) Why?

We Il compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.

15110 Principles of Computing, 18
Carnegie Mellon University - CORTINA

