UNIT 4C
Iteration: Scalability & Big O
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Counting Operations

We measure time efficiency by counting the
number of operations performed by the
algorithm.

But what is an operation?
assignment statements
comparisons
return statements
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Linear Search: Worst Case

# let n = the length of list.
def search(list, key):

index = 0 1
while index < len(list): n+l
if list[index] == key: n
return index
index = index + 1 n
return None 1
Total: 3n+3
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Linear Search: Best Case
# let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): 1
if list[index] == key: 1
return index 1
index = index + 1
return None
Total: 4

15110 Principles of Computing,
Carnegie Mellon University - CORTINA




Counting Operations

 How do we know that each operation we count
takes the same amount of time? (We don’ t.)

* So generally, we look at the process more
abstractly and count whatever operation
depends on the amount or size of the data
we’ re processing.

* For linear search, we would count the number
of times we compare elements in the list to the
key.
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Linear Search: Worst Case Simplified

# let n = the length of list.
def search(list, key):
index = 0
while index < len(list):
if list[index] == key: n
return index
index = index + 1
return None

Total: n
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Linear Search: Best Case Simplified

# let n = the length of list.
def search(list, key):
index = 0
while index < len(list):
if list[index] == key: 1
return index
index = index + 1
return None
Total: 1
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Order of Complexity

*  Forvery large n, we express the number of
operations as the (time) order of complexity.

*  Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only

concerned about
the highest power
of n.
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O(n) (“Linear”)

2n+8
4 3n+3 n
Number of
Operations
n
(amount of data)
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Numbe?r of A n
Operations

40 For a linear algorithm,

if you double the amount
of data, the amount of work
you do doubles
(approximately).
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O(1) (“Constant-Time”)

Number of a
Operations

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

v
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(amount of data)

* Worst Case:

* Best Case:

* Average Case:

Linear Search

O(n)

0(1)
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Insertion Sort: Worst Case

# let n = the length of list.
def isort(list):

i=1

while i < len(list):
move left(list, i) n-1
i=1i+1

return list

There aren-1 move left operations. But how

many operations does each move left take?
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Insertion Sort: Worst Case

When i =1, move_left shifts at most 1 element.
When i = 2, move_left shifts at most 2 elements.

When i = n-1, move_left shifts at most n-1
elements.

The maximum number of elements shifted, S,
approximates the total amount of work done in
the worst case.

S=1+2+...+(n-1) =n(n-1)/2 = O(n?)
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Order of Complexity

Number of operations  Order of Complexity

n2 O(n?)

n%/2+3n/2-1 O(n?)

2n% +7 0(n?)
Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.
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O(n2?) (“Quadratic”)

n2
4 on2+7 n%/2 + 3n/2 -1
Number of
Operations
n
(amount of data)
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O(n?)

Number of
Operations
1600} N2
For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).
400
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Insertion Sort
* Worst Case: O(n?)
* Best Case: O(n) Why?

We Il compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.
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