ittt
OIS

UNIT 6B
Organizing Data: Hash Tables

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Comparing Algorithms

* You are a professor and you want to find an exam
in a large pile of n exams, one per student.
* Search the pile using linear search.
— Perstudent: O(n)
— Total for n students: O(n?)
* Have an assistant sort the exams first by last name.
— Assistant’ s work: O(n log n) using merge sort

— Professor:
. Search for one student: O(log n) using binary search
. Total for n students: O(n log n)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Another way

* Set up a large number of “buckets”.
* Place each exam into a bucket based on some
function.
— Example: 100 buckets, each labeled with a value from 00
to 99. Use the student’ s last two digits of their student ID
number to choose the bucket.
* |deally, if the exams get distributed evenly, there will
be only a few exams per bucket.
— Assistant: O(n) putting n exams into the buckets

— Professor: O(1) search for an exam by going directly to the
relevant bucket and searching through a few exams.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Strings and ASCII codes

s = "hello"
for i in range(0,len(s)):

print (ord(s[i]))

104 You can treat a string like a list

in Python.
101 If you access the it" character and
108 pass it to the ord function,
108 you get the ASCII code for that
111 character.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Hash table

* Let's assume that we are going to store only lower
case strings into an array (hash table).

>>> tablel = [None] * 26

>>> tablel

[None, None, None, None, None, None, None,
None, None, None, None, None, None, None,
None, None, None, None, None, None, None,

None, None, None, None, None]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Hash table

* We could pick the list position where each string is
stored based on the first letter of the string using
this hash function:

def h(string):
return ord(string[0]) - 97

The ASCII values of lowercase letters are:
a'->97,'b'->98, 'c' ->99, 'd' -> 100, etc.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Inserting into Hash Table

* Toinsert into the hash table, we simply use the
hash function h to determine which index
(“bucket”) to store the element.

def insert(table, name) :
table[h(name)] = name

>>> insert (tablel, "aardvark")
>>> insert (tablel, "beaver")

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Hash function (cont'd)

* Using the hash function h:

— "aardvark" would be stored in the table (list) at index 0

— "beaver" would be stored in the table (list) at index 1

— "kangaroo" would be stored in the table (list) at index 10

— "whale" would be stored in the table (list) at index 22
>>> tablel
["aardvark", "beaver", None, None, None, None,
None, None, None, None, "kangaroo", None,
None, None, None, None, None, None, None,

None, None, None, "whale", None, None, None]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Hash function (cont'd)

* Butif wetrytoinsert "bunny" and "bear" into the
hash table, each word overwrites the previous word
since they all hash to index 1:

>>> insert(tablel, "bunny")

>>> insert (tablel, "bear")

>>> tablel

["aardvark", "bear", None, None, None, None,

None, None, None, None, "kangaroo", None,

None, None, None, None, None, None, None,

None, None, None, "whale", None, None, None]

Revised Hash table

* Let's make our hash table a list of lists (a list of
buckets). Each bucket can hold more than one string.

>>> table2 = [None] * 26

>>> for i in range(0,26):

>>> table2[i] = [None]

>>> table2

[[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None]]

def

Revised insert function

insert(table, key):

find the bucket (sublist) in the table
using the hash function h

bucket = table[h (key)]

append the key string to the

appropriate bucket (sublist)

bucket. append (key)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

>>>
>>>
>>>
>>>
>>>
>>>

Inserting into new hash table

insert(table2, "aardvark")
insert(table2, "beaver")
insert(table2, "kangaroo")
insert(table2, "whale")
insert(table2, "bunny")
insert(table2, "bear")

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Inserting into new hash table (contd)

>>> table2

[["aardvark"], ["beaver", "bunny", "bear"],
[None], [None], [None], [None], [None],
[None], [None], [None], ["kangaroo"],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], ["whale"], [None], [None], [None]]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Collisions

* "beaver", "bunny" and "bear" all end up in the same
bucket.

* These are collisions in a hash table.

* The more collisions you have in a bucket, the more
you have to search in the bucket to find the desired
element.

* We want to try to minimize the collisions by creating
a hash function that distribute the keys (strings) into
different buckets as evenly as possible.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

New Hash Function: First Try

def h(string):
k=0
for i in range(0,len(string)) :
k = ord(string[i]) + k

return k

h(“hello”) => 532
h(“clleh”) => 532

Permutations still give same index (collision) and numbers are
large, which means we need a large number of buckets.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

New Hash Function: Second Try

def h(string):
k=0
for i in range(0,len(string)):
k = ord(string[i]) + k*256

return k

h(“hello”) => 448378203247
h(“olleh”) => 478560413032

Better, but numbers are still high. We probably don’ t want to
(or can't) create lists that have indices this large.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

New Hash Function: Third Try

def h(string, tablesize):
k=0
for i in range(0,len(string)) :
k = ord(string[i]) + k*256

return k % tablesize

We can use the modulo operator to take the large
values and map them to indices for a smaller array.

15110 Principles of Computing, 17
Carnegie Mellon University - CORTINA

Revised insert function

def insert(table, key):
find the bucket (sublist) in the table
array using the new hash function h
bucket = table[h(key, len(table))]
append the key string to the
appropriate bucket (sublist)
bucket. append (key)

15110 Principles of Computing, 18
Carnegie Mellon University - CORTINA

>>>
>>>
>>>
>>>
>>>
>>>

Final results

table3 = [None] * 13

for i in range(0,12):
table3[i] = [None]

insert (table3, "aardvark")

insert(table3, "bear")

insert (table3, "bunny")

Still have one
collision, but

>>> insert(table3, "beaver") bﬂwydsam

. distributed better.
>>> insert(table3, "dog")
>>> table3
[[None], [None], [None], [None], [None], [None],
[None], [None], [None], ["bunny"],
["aardvark", "bear"], ["dog"], ["beaver"]]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Searching in a hash table

To search for a key, use the hash function to find out which

bucket it should be in, if it is in the table at all.

def contains(table, key):
bucket = table[h(key,len(table))]

for entry in bucket:
if entry == key:
return True

return False

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

20

10

Efficiency

* |f the keys (strings) are distributed well throughout
the table, then each bucket will only have a few keys
and the search should take O(1) time.

* Example:
If we have a table of size 1000 and we hash 4000 keys
into the table and each bucket has approximately the
same number of keys (approx. 4), then a search will
only require us to look at approx. 4 keys => 0O(1)

— But, the distribution of keys is dependent on the keys and
the hash function we use!

15110 Principles of Computing, 21
Carnegie Mellon University - CORTINA

11

