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UNIT 6B
Organizing Data: Hash Tables
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Comparing Algorithms

* You are a professor and you want to find an exam
in a large pile of n exams, one per student.
* Search the pile using linear search.
—  Perstudent: O(n)
—  Total for n students: O(n?)
* Have an assistant sort the exams first by last name.
—  Assistant’ s work: O(n log n) using merge sort

—  Professor:
. Search for one student: O(log n) using binary search
. Total for n students: O(n log n)
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Another way

* Set up a large number of “buckets”.
* Place each exam into a bucket based on some
function.
— Example: 100 buckets, each labeled with a value from 00
to 99. Use the student’ s last two digits of their student ID
number to choose the bucket.
* |deally, if the exams get distributed evenly, there will
be only a few exams per bucket.
— Assistant: O(n) putting n exams into the buckets

— Professor: O(1) search for an exam by going directly to the
relevant bucket and searching through a few exams.
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Strings and ASCII codes

s = "hello"
for i in range(0,len(s)):

print (ord(s[i]))

104 You can treat a string like a list

in Python.
101 If you access the it" character and
108 pass it to the ord function,
108 you get the ASCII code for that
111 character.
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Hash table

* Let's assume that we are going to store only lower
case strings into an array (hash table).

>>> tablel = [None] * 26

>>> tablel

[None, None, None, None, None, None, None,
None, None, None, None, None, None, None,
None, None, None, None, None, None, None,

None, None, None, None, None]
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Hash table

*  We could pick the list position where each string is
stored based on the first letter of the string using
this hash function:

def h(string):
return ord(string[0]) - 97

The ASCII values of lowercase letters are:
a'->97,'b'->98, 'c' ->99, 'd' -> 100, etc.
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Inserting into Hash Table

* Toinsert into the hash table, we simply use the
hash function h to determine which index
(“bucket”) to store the element.

def insert(table, name) :
table[h(name)] = name

>>> insert (tablel, "aardvark")
>>> insert (tablel, "beaver")
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Hash function (cont'd)

*  Using the hash function h:

—  "aardvark" would be stored in the table (list) at index 0

—  "beaver" would be stored in the table (list) at index 1

—  "kangaroo" would be stored in the table (list) at index 10

—  "whale" would be stored in the table (list) at index 22
>>> tablel
["aardvark", "beaver", None, None, None, None,
None, None, None, None, "kangaroo", None,
None, None, None, None, None, None, None,

None, None, None, "whale", None, None, None]
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Hash function (cont'd)

* Butif wetrytoinsert "bunny" and "bear" into the
hash table, each word overwrites the previous word
since they all hash to index 1:

>>> insert(tablel, "bunny")

>>> insert (tablel, "bear")

>>> tablel

["aardvark", "bear", None, None, None, None,

None, None, None, None, "kangaroo", None,

None, None, None, None, None, None, None,

None, None, None, "whale", None, None, None]

Revised Hash table

* Let's make our hash table a list of lists (a list of
buckets). Each bucket can hold more than one string.

>>> table2 = [None] * 26

>>> for i in range(0,26):

>>> table2[i] = [None]

>>> table2

[ [ None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None]]




def

Revised insert function

insert(table, key):

# find the bucket (sublist) in the table
# using the hash function h

bucket = table[h (key) ]

# append the key string to the

# appropriate bucket (sublist)

bucket. append (key)
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>>>
>>>
>>>
>>>
>>>
>>>

Inserting into new hash table

insert(table2, "aardvark")
insert(table2, "beaver")
insert(table2, "kangaroo")
insert(table2, "whale")
insert(table2, "bunny")
insert(table2, "bear")
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Inserting into new hash table (contd)

>>> table2

[["aardvark"], ["beaver", "bunny", "bear"],
[None], [None], [None], [None], [None],
[None], [None], [None], ["kangaroo"],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], ["whale"], [None], [None], [None]]
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Collisions

* "beaver", "bunny" and "bear" all end up in the same
bucket.

* These are collisions in a hash table.

* The more collisions you have in a bucket, the more
you have to search in the bucket to find the desired
element.

* We want to try to minimize the collisions by creating
a hash function that distribute the keys (strings) into
different buckets as evenly as possible.
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New Hash Function: First Try

def h(string):
k=0
for i in range(0,len(string)) :
k = ord(string[i]) + k

return k

h(“hello”) => 532
h(“clleh”) => 532

Permutations still give same index (collision) and numbers are
large, which means we need a large number of buckets.
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New Hash Function: Second Try

def h(string):
k=0
for i in range(0,len(string)):
k = ord(string[i]) + k*256

return k

h(“hello”) => 448378203247
h(“olleh”) => 478560413032

Better, but numbers are still high. We probably don’ t want to
(or can't) create lists that have indices this large.
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New Hash Function: Third Try

def h(string, tablesize):
k=0
for i in range(0,len(string)) :
k = ord(string[i]) + k*256

return k % tablesize

We can use the modulo operator to take the large
values and map them to indices for a smaller array.
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Revised insert function

def insert(table, key):
# find the bucket (sublist) in the table
# array using the new hash function h
bucket = table[h(key, len(table))]
# append the key string to the
# appropriate bucket (sublist)
bucket. append (key)
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>>>
>>>
>>>
>>>
>>>
>>>

Final results

table3 = [None] * 13

for i in range(0,12):
table3[i] = [None]

insert (table3, "aardvark")

insert(table3, "bear")

insert (table3, "bunny")

Still have one
collision, but

>>> insert(table3, "beaver") bﬂwydsam

. distributed better.
>>> insert(table3, "dog")
>>> table3
[ [None], [None], [None], [None], [None], [None],
[None], [None], [None], ["bunny"],
["aardvark", "bear"], ["dog"], ["beaver"]]
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Searching in a hash table

To search for a key, use the hash function to find out which

bucket it should be in, if it is in the table at all.

def contains(table, key):
bucket = table[h(key,len(table))]

for entry in bucket:
if entry == key:
return True

return False
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Efficiency

* |f the keys (strings) are distributed well throughout
the table, then each bucket will only have a few keys
and the search should take O(1) time.

* Example:
If we have a table of size 1000 and we hash 4000 keys
into the table and each bucket has approximately the
same number of keys (approx. 4), then a search will
only require us to look at approx. 4 keys => 0O(1)

— But, the distribution of keys is dependent on the keys and
the hash function we use!
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