UNIT 7A

Data Representation: Numbers and Text
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Digital Data

10010101011110101010110101001110

*  What does this binary sequence represent?

* It could be:
— aninteger
— afloating point number
— text encoded with ASCII or another standard
— apixel of an image
— several digital samples of a music recording
— aninstruction that the computer is executing
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Integer Representation

* Aninteger can be represented using binary.

 Aninteger can be:
— unsigned (always considered non-negative)
— signed (positive or negative)
* Aninteger can be represented using varying
numbers of bits
— 8 bits (byte) — 32 bits
— 16 bits (word) — 64 bits ....
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Unsigned Integers

* Every bit represents a power of 2.
 Example (8 bits):

27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

1 0 1 1 0 1 0 1
27 25 24 22 20
128 + 32 + 16 + 4 + 1 =181
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32

Unsigned Integers: Range

minimum maximum

0 28—-1
(255)

0 216 -1
(65,535)

0 232-1
(4,294,967,295)
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Signed Integers

Every bit represents a power of 2 except the
“left-most” bit, which represents the sign of
the number (0 = positive, 1 = negative)

Example for positive integer (8 bits):

+ 26 25 24 23 22 21 20
0 o 1 1 o0 1 o0 0
+ 25 24 22

32 + 16 + 4 = +52
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Signed Integers: 2's complement

 When the leftmost bit is a 1, the integer is
negative.

 To find its magnitude, we take the 2's
complement of this number.

— The 2's complement is obtained by flipping each
bit of the number (from 0to 1, or 1 to 0) and
then adding 1 to that number.
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Signed Integers: Negative

* What value is this signed integer?
1 1 0 0 1 1 0 0
- (leftmost bit 1 -> negative)

Flip each bit:

0 0 1 1 0 0 1 1
and add 00000001 to get magnitude:

0 0 1 1 0 1 0 0

25 24 22

32 + 16 + 4 = 52
So, 11001100 = -52
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Signed Integers: Negative

Example: How do you store -52 in 8 bits?

Start with +52:

0 0 1 1 0 1 0 0

2> 24 22
32 + 16 + 4 = 52

Flip each bit:

1 1 0 0 1 0 1 1
and add 00000001 (in base 2):

1 1 0 0 1 1 0 0 = -52
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2's complement property

When you add a number to its 2's
complement (in binary), you always get 0.
— Remember, you're using base 2 arithmetic.

Example (using 8 bits):

00110100 +52
+ 11001100 -52
00000000 0
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Signed Integers: Range

bits minimum maximum
8 =27 27-1
(—128) (+127)
10000000 (binary) 01111111 (binary)
16 —215 2151
(-32,768) (+32,767)
32 -3t 231-1
(—2,147,483,648) (+2,147,483,647)
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Text: ASCII standard

* ASCII (American Standard Code for Information
Interchange)

— 7-bit code to represent standard U.S. characters on a
keyboard

— Typically stored using 8 bits.

— The 8t bit is sometimes used for parity (more on this
shortly).
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ASCII table

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
O|NUL | SOH | STX |ETX [EOT |ENQ | ACK |BEL | BS | HT | LF | VT | FF | CR | SO | SI
1|DLE |DC1 |DC2 [ DC3 | DC4 |NAK | SYN |ETB [CAN | EM |SUB |ESC| FS | GS | RS | US
2 ! NEAEREEETE ( ) | x| + | - - |/
3] 0 1 2 3 4 5 6 7 8 9 : H < = > ?
4 @ A B C D E F G H I J K L M N 0
5| P Q R S T [} Vv W X Y z [ \ ] N -
6| - alb|c|d|e|f|9|h]|i|j|k|1T]|m|[n]o
7/plalr|s|[tfufv|w]x]y]|]=z]{] | ]|3}]|~|DEL

* Values above are represented in hexadecimal
(base 16).

 ASCII code for “M” is 4D (hex).
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ASCIl Example

e The ASCII code for “M” is 4D hexadecimal.
e Conversion from base 16 to base 2:

hex binary hex binary hex binary hex binary
0O 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

* 4D (hex) =0100 1101 (binary) = 77 (decimal)
(leftmost bit can be used for parity)
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Parity

* To detect transmission errors, the 8th
(leftmost) bit could be used as an error-
detection bit.

* Even parity: Set the leftmost bit so that the
number of 1’ s in the byte is even.

* Odd parity: Set the leftmost bit so that the
number of 1’ s in the byte is odd.
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Example

 The character “M” is transmitted using odd parity.
e “M” in ASCII (7-bits) is 1001101.

* Using odd parity, we transmit 11001101 since this
makes the number of 1’ s odd.

* |f the receiver receives a character with an even
number of 1’ s, the receiver knows something went
wrong and requests a retransmission.

— If two bits are flipped during transmission, we can’ t detect
this with this simple parity scheme, however the
probability of 2 or more bits in error is extremely low.
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» Seven characters are transmitted here as bytes
using even parity along with a special 8t byte.

* The two colors represent 1’ sand 0’ s.

* One bitisin error. Can you find it?
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Floating Point Numbers

Age of the Universe in years:

TN

sign significand exponent

* Floating point numbers are commonly
represented as a binary number with these
three components.
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|[EEE-754 standard

* Most common encoding of floating point
numbers on computers today.

* 32-bit (“single-precision”) floating point:

exponent significand
(8 bits) (23 bits)
sign
(1 bit)
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|IEEE-754 standard

* Binary Significand
— Always assumes the form 1.XXXXXXXXX
in binary. Does not store the leading 1.

— Stores the fractional part using 23 bits.

* Exponent

— Stores exponent offset by 127.
* Example: An exponent of -6 would be stored as 121.

— Stores exponent as unsigned 8-bit integer.
— Exponent range: min -126, max +127
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Example: IEEE-754

* Floating point number in binary:
-1.0110111 X 200011010

1 10011001 01101110000000000000000

sign
(1 bit)

| exponent significand
(8 bits) (23 bits)

00011010 + 01111111
= 10011001
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